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PREFACE

This report presents major findings of the research program entitled, "Reliability Based

Structural Optimization," sponsored by NASA Lewis Research Center, Grant No. NAG

3 - 1489. Mr. Dale Hopkins was the NASA Technical Officer.

This report is intended for the demonstration of function approximation concepts

and their applicability in reliability analysis and design. Particularly, approximations

in the calculation of the safety index, failure probability and structural optimization

(modification of design variables) are developed. With this scope in mind, extensive

details on probability theory are avoided. Definitions relevant to the stated objectives

have been taken from standard text books.

The idea of function approximations is to minimize the repetitive use of

computationally intensive calculations by replacing them with simpler closed-form

equations, which could be nonlinear. Typically, the approximations provide good accuracy

around the points where they are constructed, and they need to be periodically updated

to extend their utility.

There are approximations in calculating the failure probability of a limit state function.

The first one, which is most commonly discussed, is how the limit state is approximated at

the design point. Most of the time this could be a first-order Taylor series expansion, also

known as the First Order Reliability Method (FORM), or a second-order Taylor series

expansion (paraboloid), also known as the Second Order Reliability Method (SORM).

From the computational procedure point of view, this step comes after the design point

identification; however, the order of approximation for the probability of failure calculation

is discussed first, and it is denoted by either FORM or SORM.

The other approximation of interest is how the design point, or the most probable

failure point (MPP), is identified. For iteratively finding this point, again the limit

xiv
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state is approximated. The accuracy and efficiency of the approximations make the

search process quite practical for analysis intensive approaches such as the finite element

methods; therefore, the crux of this research is to develop excellent approximations for

MPP identification and also different approximations including the higher-order reliability

methods (HORM) for representing the failure surface.

This report is divided into several parts to emphasize different segments of the

structural reliability analysis and design. Broadly, it consists of mathematical foundations,

methods and applications. Chapter 1 discusses the fundamental definitions of the

probability theory, which are mostly available in standard text books. Probability density

function descriptions relevant to this work axe addressed. In Chapter 2, the concept and

utility of function approximation are discussed for a general application in engineering

analysis. Various forms of function representations and the latest developments in

nonlinear adaptive approximations are presented with comparison studies.

Research work accomplished in reliability analysis is presented in Chapter 3. First,

the definition of safety index and most probable point of failure are introduced. Efficient

ways of computing the safety index with a fewer number of iterations is emphasized.

In Chapter 4, the probability of failure prediction is presented using first-order, second-

order and higher-order methods. System reliability methods are discussed in Chapter 5.

Chapter 6 presents optimization techniques for the modification and redistribution of

structural sizes for improving the structural reliability.

This report also contains several appendices on probability parameters.

XV
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CHAPTER I. PROBABILITY THEORY PRELIMINARIES

During the last ten years, there has been an increasing trend for analyzing structures using

probabilistic information of loads, geometry, material properties, and boundary conditions. As

the structures become more complex (e.g., space shuttle main engine parts, space structures,

advanced tactical fighters, etc.) and the performance requirements become more ambitious,

the need for analysis of uncertainties and computation of probabilities grows.

The reliability of a structure is its ability to fulfill its design purpose for a specified reference

period. Most structures have a number of possible failure modes. In calculating the structural

reliability, the influence of multiple disciplines has to be taken into account. Many structural

problems are modeled and simulated using the finite element methods (FEM) for obtaining a

detailed structural response. FEM is a computationally intensive numerical procedure with a

large number of degrees of freedom. With an increase in the complexity of the structural model

and the multidisciplinary nature of analyses, the number of failure modes and their computation

increase very significantly. For accurate and efficient calculation of structural reliability, new

and innovative methods have to be employed to make this performance measure practical in a

wide variety of structural applications. The structural reliability can be used as a comparative

measure in choosing among competitive designs.

In this chapter, basic definitions of probability theory, density function distributions and

design issues are discussed.

1.1 Reliability and Its Importance

Reliability is the probability of a system performing its function over a specified period

of time and under specified service conditions. Structural response depends on many factors

such as loads, boundary conditions, stiffness and mass properties. The response is considered

satisfactory when the design requirements imposed on the structural behavior are met. Each of



these requirements is termed as "limit state" or "constraint". The study of structural reliability

concerns the calculation and prediction of the probability of limit state violation at any stage

during its life. The probability of occurrence of an event such as limit state violation is a

numerical measure of the chance of its occurring. The next goal in this calculation is to improve

the structural reliability to minimize the risk and failure with the available and allowed design

alternatives.

1.1.1 Factor of Safety and Reliability

Factor of safety is used to maintain a proper degree of safety in structural design. Generally,

the factor of safety is understood to be the ratio of the expected strength to the expected load.

In practice, both the strength and load are variables, the values of which are scattered about

their respective mean values. When the scatter in variables is considered, the factor of safety

could potentially be less than unity, and the traditional factor of safety based design would fail.

1.2 Probability Theory Introduction

An experiment denotes the act of performing something the outcome of which is subject to

uncertainty and not known exactly. For example, tossing a coin, rolling a die, etc. The sample

space is the set of all the possible outcomes of the experiment, denoted as S. The sample space

can be discrete or continuous. An event is the outcome of a single experiment. For example,

realizing a head on tossing a coin, getting an even number (2 or 4 or 6) on rolling a die. The

union of two events A and B is written as A U B and is the set of outcomes that belong to

A or B or both. The intersection of the two events A and B is written as A N B and is the

set of outcomes that belongs to both A and B. A null event (empty set) has no outcomes. If

the occurrence of one event precludes the occurrence of other events in a given experiment, the

events are called mutually exclusive. The complement of event A is written as _, and is the

outcomes of S which do not belong to A.

2



1.2.1 Definition of Probability

The probability of occurrence of an event E is defined as the ratio of the number of

occurrences of E to the total number of trials.

P(E) = lim(N ) (1.1)

where n is the number of trials in which the event E has occurred, and N is the total number

of trials. Also,

0 <_ P(E) <_ 1

P(E) = 0

P(E) = 1

If A and B are mutually exclusive,

E is impossible

E is certain

P(A U B) = P(A) + P(B)

In general, if A and B are any two events, then

P(A t.) B)= P(A) + P(B) - P(AN B)

P(A) = 1 - P(fl)

1.2.1.1 Conditional Probability

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

Conditional probability of events A and B is the probability of B given that A has occurred.

It is written as P(BIA ).

P(ANB) (1.8)
P(BIA)- P(A)

From the definition of conditional probability,



P(A N B) = P(BIA)P(A )

P(B N A) = P(AIB)P(B )

Events A and B are said to be independent if and only if

P(ANB)=P(A)P(B)

(1.9)

(1.1o)

(1.11)

Example 1.1

A pair of ordinary dice are thrown. What is the probability of the sum of spots on the

upward-landing faces being 7 (event A), given that this sum is odd (event B)?

The sample space is composed of 36 outcomes:

= {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(_,1),(_,2),(5,3),(5,4),(5,5),(5,6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

The number of outcomes favorable to A is 6, so the unconditional probability is

6 1

P(A) = 36 6

If B has occurred, then one of 18 events occurred (a "new" sample space with 18 points),

and the conditional probability is

6 1

P(AIB) = I-8= 3



The probability of event B is
18 1

P(B) = 3-_ =

and P(AIB ) can also be obtained from Eq.(1.8):

P(BNA)

P(A[B)- P(B) ! 3
2

1.2.2 Random Variable

A random variable X, takes on various values x within the range -oc < x < c_. A random

variable is denoted by a capital letter, and its particular value is represented by a lower case

letter. Random variables are of two types; (i) discrete and (ii) continuous. If the random

variable is allowed to take only discrete values xl,x2,...,x,_, it is called a discrete random

variable. On the other hand, if the random variable is permitted to take any real value in a

specified range, it is called a continuous random variable. In this report, we concentrate on

continuous variables. For example, the yield strength R of steel is a random variable. When R

is measured in a tensile test, different values are observed for each identically prepared specimen

0 < R < (1.12)

1.2.3 Probability Density and Cumulative Distribution functions

The function that describes the distribution of a random variable over the sample space

of the continuous random variable, X, is called the probability density function (pdf) and is

designated as fx(x). The cumulative distribution function (cdf) Fx(z) is an alternate way to

describe the probability distribution for both discrete and continuous random variables, cdf is

defined for all values of random variable X from -oc to +oc and is equal to the probability

that X is less than or equal to a specific value x.

For a continuous random variable, Fz(x) is calculated by integrating the pdf for all values

of X less than or equal to x:



ffx(x)= fx(s)d_ (i.i3)
O0

If the random variable X is continuous and if the first derivative of the distribution function

exists, the probability density function fx(x) is given by the first derivative of Fx (x):

dFx(_) (1.14)/x(_) - d_

The cdf is a nondecreasing function of x (its slope is always greater than or equal to zero)

with lower and upper limits of 0 and 1, respectively, cdf is also referred to in the report as a

distribution function. A typical probability density function and the corresponding distribution

function are shown in Fig. 1.1.

In general, there are n random variables. The outcome is an n dimensional random vector.

The probability is calculated as

P[a < X < b,c < Y < d] = fxr(x,y)dxdy (i.i5)

Properties:

fxr(x,y) >_ 0 (1.16a)

1.2.3.1 Joint Density and Distribution Functions

For independent random variables, the joint density function is given by the product of

individual or marginal density functions as

fxi,x_ ....._ = f_(_).., fxo(_) (1.17)
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The joint distribution function is given as

Fx,,x2.....xo(xl,x2,...x_) = Fx,(xl).Fx2(x_)...Fx,,(x,,) (I.18)

In general, to compute a probability associated with an event involving a multidimensional

vector whose joint pdf is fx(X),

_) = f,_fx(X)dXP(X

This is the probability that the random vector X will lie in region _.

1.2.3.2 Marginal Distribution of X

For example, the pdf of X without regard to Y is

(1.19)

FIx(x) = fxr(x,y)dy
_20

1.2.3.3 Conditional Distribution of X given Y

The pdf of X for a specified Y is

(1.20)

fxy(x,y) fy > 0 (1.21)
fxl Y(xl_)- fy(_)

1.2.3.4 Independent Random Variables

If X and Y are independent, then,

fxw(x,y) = fx(x) (1.22)

The conditional pdf becomes the marginal pdf, and the joint pdf becomes the product of the

marginals:

fxy(x,y) =/x(x)fy(_)

8

(1.23)



In general,the joint pdf is equal to the product of the marginals when all variables are mutually

independent:

n

fx(X) = H fx,(x,) (1.24)
i---1

1.2.4 Mean, Mode and Median

The probability density or distribution function of a random variable contains complete

information about the variable. However, in many cases, the gross properties of the variable

are used. The most commonly used are the mean and standard deviation. A measure of central

tendency is captured by the mean value/_ of the probability distribution. The variation from

the mean is captured, to first order, by the variance c_2 and its by products, the standard

deviation a and coefficient of variation Cx.

Mean(first moment):

The mean value, also termed as the expected value or average, is used to describe the central

tendency of a random variable. This is a "weighted average" of all the values that a random

variable may take. If fx(x) is the probability density function of X, the mean is given by

£= E(X)= xfx(x)dx (1.25)

# is the distance to the centroid of the pdf. It is called the "first moment" since it is first

moment of area of the pdf. The mean is analogous to the centroidal distance of a cross-section.

According to the definition of a random variable, any function of a random variable is itself

a random variable. Therefore, if g(x) is an arbitrary function of x, the expected value of g(x)

is defined as

SE[g(x)]= g(X)fx(x)d (1.26)

9



Mode:

Mode is the value of X corresponding to the peak value of the probability density function.

Median:

Median is the value of X at which the cumulative distribution function has a value of 0.5.

Higher-Order Moments

Define the n th order moment by letting Y = X_:

SE(X n) = x"fx(z)dx (1.27)
oO

For n = 2, the mean square value of X is

E(X 2) = x2 fx(x)dx (1.28)
O0

Properties of Expected Values

E(cX)= cE(X)

where c isa constant.

Given Y --X, +X2 + ...X_,the expected value of Y isa linearcombination of individualvalues:

E(Y) = E(XI) + E(X2) + ...E(X_)

Only if X and Y are independent,

E(XY) = E(X)E(Y)

1.2.5Standard Deviation and Skewness Coefficient

The expected value or mean value is a measure of the central tendency, which indicates

the location of the distribution on the coordinate axis representing the random variable. A

measure of the variability of the random variable is usually given by a quantity known as the

standard deviation. Another quantity, which not only gives a measure of the variability, but

also a measure of the symmetry of the density function, is called the skewness coefficient.

10



1.2.5.1 Standard Deviation

The variance of a random variable X is as a measure of the degree of randomness about the

mean

¢r2x = V(X) = E[(X- #x) 2] (1.29)

Geometrically, it represents the moment of inertia of the pdf about the mean value. The variance

of a random variable is analogous to the moment of inertia of a weight about its centroid. The

variance or standard deviation is a measure of the variability of a random variable or the

breadth of the density function. The standard deviation is defined as

= +v v (1.30)

The standard deviation is often preferred over the variance as a measure of dispersion because

it has the same units as X and/_.

Properties of Variance

V(X) can also be written as E(X _) - #2x. If c is a constant, V(c -I- X) = V(X),

V(X1 + X2 + ... + X,_) = V(XI) + V(X2) + ... ÷ V(X,_), only if X_ are mutually independent.

The coefficient of variation is a measure of dispersion in nondimensional form and is defined as

coefficient of variation of X= standard deviation= a__x_x (1.31)
mean #x

1.2.5.2 Skewness Coefficient

The expected value of the cube of the deviation of the random variable from its mean value

(also known as the third moment of the distribution about the mean) is taken as a measure of

the skewness or lack of symmetry of the distribution:

E[(X - #x) 3] =//(X- #x)3fx(x)dx (1.32)

11



The value of E[(X -/_x) 3] can be positive or negative. The skewness coefficient is defined as

skewness coefficient = E[(X - px) 3]
a)c (1.33)

1.2.5.3 Covariance

The covariance of two random variables X and Y is defined as

FSCov(X,Y) = (x - t_x)(Y- #y).fx,y(x,y)dxdy = _xY
oo

By expanding the product, it can be rewritten as

axr = E(XY)- _x#r

(1.34)

(1.35)

where

If X and Y are independent variables, then axy = 0. The converse is not generally true.

axy = 0, X and Y are said to be uncorrelated.

The correlation coefficient Px,y for the random variables is defined as

FE(XY) = xyfxy(x,y)dxdy (1.36)

If

Coy(X, Y)
px,Y - (1.37)

(7 X . cry

and its value lies between -1 and 1. The correlation coefficient is often used to characterize the

relationship between two variables. The physical meaning of the correlation coefficient is that

its value is nearly unit if the two random variables are linearly related, but is nearly zero if

they are not.

1.3 Probability Distributions

There are several types of probability distributions for describing random variables. The

selection of a particular type of probability distribution depends on (i) the nature of the problem,

12



(ii) the underlying assumptionsassociatedwith the distribution, (iii) the shapeof the curve

betweenf(z) or F(x) and x obtained after plotting the available data, and (iv) the convenience

and simplicity afforded by the distribution in subsequent computations.

The properties of some of the more commonly used distributions are presented in the

following sections.

1.3.1 Normal Distribution

The density function of a normally distributed random variable X (also known as Gaussian

distribution) is given by

1 exp[__(_x_)2 ] (1.38)fx(x)- V'_'_o'X

where X is identified as N(#x,ax). The parameters of the distribution #x and ax denote,

respectively, the mean value and standard deviation of the variable X. The density function

and the corresponding distribution function are shown in Fig. 1.1. The normal distribution

has the following properties:

(i) Any linear function of normally distributed random variables is also normally distributed.

Let Z be the sum of normally distributed random variables

Z = ao + alX1 + a2X_ + ... + a,_X,_ (1.39)

where a_'s are constants. Then Z will be normal, where

I _#z = ao + __, ai#i az -- _--_(aia,) 2 (1.40)
i=1 i=l

(ii) The nonlinear function of normally distributed random variables can be normal, Weibull,

gamma, lognormal, etc. or example, the function y = _/X_ + X_ of two independent and

standard normally distributed random variables X1 and X2 with N(0, cr2) is a Rayleigh

distribution function as shown in Fig. 1.2. Its density and distribution functions are

13



fy(y)

% %

Y

Fig. 1.2 Rayleigh Distribution with ¢r--a t & _2

computed as

2

_e-_, y > o
f_,(v)

otherwise0

1 -:- e-_, y > 0
F_(y)=

0 otherwise

1.3.2 Standard Normal Distribution

(1.41a)

(1.41b)

A Gaussian distribution with parameters tt = 0 and a = 1 is called the standard normal

distribution and is identified as N(0, 1). The density function of a standard normal vaxiate

(variable) Z is given by

1 _ 2 2

f z(z ) = -_ expt- T] - oo < z < oo (1.42)
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Fig. 1.3 StandardNormal Distribution

and it is symmetric about its mean # = 0 as shown in Fig. 1.3. The distribution function of

the standard normal variate Z is commonly denoted as ¢(z) and is given by

i" 1 Z 2

¢(z) = Fz(z)= J_ (1.43)'tz

If ¢(zp) = p is given, the standard normal variate zp corresponding to the cumulative probability

(p) is denoted as

zp = ¢-1(p) (1.44)

The values of the distribution function _(z) of a standard normal variate are given as tables

of normal distribution (Ref. [4]). Usually, the possibilities are given in tables only for positive

values of z and for negative values

15



¢(-;) = 1- ¢(z)

due to the symmetry of the density function about zero. Similarly, we can find that

(1.45)

z, = ¢-1(p) = _¢-1(1 _ p) (1.46)

Once the standard normal table of (I)(z) is available, the probabilities of any other normal

distribution can be determined using the following procedure. For a nonstandard X with

g(,,o)

1 exp[- ( )2].dx (1.47)
P(_.< x < _,)- e_-7_

This represents the area under the density function between i and u. By defining a new variable

(standard normal variate) z as

then

and the probability becomes

x-#
Z -- m

_r

dx

dz = -- (1.48)
(7

P(I < X <_u)- 1 f_-_ z 2
_ _ j,__, _xp[--_].dz (1.49)

which can be recognized as the area under the standard normal density function between (__e)

and (£_-_). Thus, the required probability can be found as

P(t < X < u) = (I)(u -/_) - (I)(_ _-)
(T

(1.50)

16



1.3.3 Lognormal Distribution

A random variable X is said to follow lognormal distribution (Fig. 1.4) if Y = lnX follows

normal distribution. Thus,

1 1 y-__v)5] -oo<y<oo

Since Y = InX the above equation can be rewritten in terms of X as

(1.51)

where

1 _ 1 l_ x - _)5] x > 0 (1.52)
f(x) = v/._xayeXp[--_( ay

and

oI = l_[(_ ): + 1] (1.53)
#x

10.2
t_y = ln _x- _ y

1.3.4 Weibull Distribution

The probability density function (Fig. 1.5) is

fx( ) -
and the distribution function cdf is

x > 0,4 > 0,/3 > 0

(_._4)

(1.55)

Fx(x) = 1 - exp[-(-_) _]

This is a two parameter family, a and ¢7. The moments in terms of the parameters are

(1.56)

E(X _)= z-r(2 + 1)
C_

where F(.) is the gamma function. The mean and coefficient of variation are

17
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Fig. 1.5 Weibull Density Function
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_,x= _r(_ + 1) (1.58)

.1-'([+ 1) 1]o._Cx= t_ -5-_) (1.59)
The mean and standard deviation are complicated functions of the parameters. However, the

approximation, a = Cx l"°s is a very good one (over the range of interest to engineers). The

following parameters are recommended in Ref. [6].

_x (1.60)
o_-- Cx1.08 _ - r( 1 _-1)

1.3.5 Exponential Distribution

This is a special case of Weibull distribution for a = 1. The pdf is

fx(x) = Aexp[-_x] x > o

= o otherwise (1.6i)

The cdf is

Fx(m) = 1 - exp[-Ax]

The moments in terms of the parameter A are

1

#_=

(1.62)

1

o-_ = _ (1.63)

The exponential is commonly used in reliability analysis. If time to failure T of a unit has

an exponential distribution, A represents failure rate (occurrences/time). This is commonly

used in electrical engineering and is occasionally used in design, e.g., long-term distribution of

fatigue stresses.
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1.3.6 Extreme Value Distribution-Type I Distribution of Maxima

The cdf is

Fx(X) = exp[-[exp{-a(x- _)}]1 (1.64)

The parameters are a and _. The mean and standard deviation in terms of a and B are

0.577
p_ = _+_

O_

1.283
i_ x -- (1.65)

Typical examples of extreme value distribution are to describe loading such as:

(i) the random variable describing the peak gust velocity experienced by an aircraft in very

long hours of operation, and

(ii) The random variable denoting the maximum water level in a year at a point in a stream.

1.4 Choice of a Statistical Model

1.4.1 Normal Distribution

For small coefficients of variation this can be used. Examples are modulus of elasticity,

Poisson's ratio, material properties, etc.

1.4.2 Lognormal Distribution

This can be used for most variables and plays an important role in probabilistic design.

Examples are cycles of failure in fatigue, material strengths, loading variables, etc.

1.4.3 Weibull Distribution

This is a very popular distribution, but it is probably over used. Examples are fatigue,

material strength, time to failure in reliability analysis, and long-term distribution of stress
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rangesin fatigue.

1.4.4 Extreme Value Distribution

Type I of maxima is used almost exclusively for extreme environmental (load) variables.

1.5 Normal Variables - Linear Response Function

For a response function Z of the form

n

z = ao+ _ a,x, (1.66)
i--1

where ai are constants and the random variables Xi have normal distribution with a mean of

#i and standard deviation of ai, Z is also normal (for any n). The mean and standard deviation

of Z are

n

#z = a0 + _ a_#_ (1.67)
i=1

-_ 2 2 (1.68)GZ = a i oi

i=1

1.6 Lognormal Variables - Multiplicative Response Function

For a response function Z of the form

n

Z = a0 l'I X_' (1.69)
i----1

where ai are constants and the random variables X_ have lognormal distribution with a median

of )(i and coefficient of variation Cx_. It is more convenient to use the median and coefficient

of variation as the basic parameters for lognormal variates.

The resulting response function Z is also lognormally distributed with median,

n

2 = a0YI 2_' (1.70)
i----1
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and the coefficientof variation

n

= I-[(1+ c},)- 1 (:.71)

1.7 Uncertainties in the Design Process

1.7.1 Strength or Resistance (R) Uncertainties

(i) The exact strength properties of the material are unknown.

(ii) The size effects are not accurately known.

(iii) The effects of machining and processing operations on the strength are not known.

(iv) There is uncertainty of the effect of the assembly operations on the strength of the system.

(v) The effect of time on the strength is not known.

1.7.2 Stress or Loading (S) Uncertainties

(i) The assumptions used in modeling and stress analysis contain errors. Discontinuities and

stress concentrations are often ignored in the analysis.

(ii) The magnitude of the peak loads are not exactly known.

1.8 Probabilistic Design

Probabilistic and statistical methods are convenient tools to describe or modeI physical

phenomena that are too complex to treat with the present level of scientific knowledge.

Probabilistic design procedures promise to improve the product quality of engineering systems

for the following reasons. Probabilistic design explicitly incorporates given statistical data into

the design algorithms, whereas conventional design discards such data. Rational comparisons

can be made between two or more competing designs for a proposed system. In the absence

of other considerations, the engineer chooses the design having the lowest failure probability.
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Probabilistic basedinformation on mechanicalperformancecan be used to develop rational

policies towards pricing, warranties,spareparts requirements,etc.

1.9 Summary

In this chapter, basic definitions of probability theory and distribution functions were

introduced. Further details and explanations can be found in the text books cited in this

chapter. In this report, only the definitions and terminology relevant to the following chapters

were presented.
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CHAPTER 2. FUNCTION APPROXIMATION TOOLS

Function approximations have been playing a major role in optimization of large scale

structures during the last two decades. Since their inception in the 1970s by Schmit and Farshi

[1], they have found an important place in the research, implementation and technology transfer

of many structural optimization algorithms. For many structural optimization problems, the

evaluation of the objective function and constraints requires the execution of costly finite

element analyses for displacements, stresses or other structural responses. The optimization

-process may require evaluating the objective function and constraints hundreds or thousands

of times. The cost of repeating the finite element analysis so many times is usually prohibitive.

However, this computational cost problem can be addressed by the use of approximations during

portions of the optimization process. First, an initial design is obtained by using an exact

analysis, and the information needed in constructing the approximations is generated. The

original optimization problem is changed into a sequential approximate optimization problem

with approximate constraints. Then, the approximate problem is solved by an optimization

algorithm. The objective function value is obtained at the optimum solution and compared with

the initial value. If the convergency is not satisfied, the process is repeated until convergence.

Since the approximation has replaced the expensive exact constraint calculations, significant

computational savings can be realized, particularly for the large scale structural problems

requiring time-consuming analyses.

Probabilistic structural analysis is an inherently computationally intensive procedure, and

the problem is exacerbated by the convergence difficulties associated with highly nonlinear

and large scale structural problems. To alleviate this problem, many approximate reliability

methods have been developed within the past two decades. A commonly used approximate

approach is to use uncertainties information represented by only the first two moments

(mean and standard deviation) and change the original probability model (multidimensional
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integration overan irregular region) into a safetyindex problem. This safety index problem is

actually anoptimization problemof finding apoint on the structural responsesurfacewhich has

the shortestdistancefrom the origin to the surfacein the standardnormal space.Therefore,the

approximation approachin optimization canbe appliedto solvethe safetyindex. Furthermore,

the probability is computed basedon the safety index information and the approximations

of the limit state surface. According to different approximations of the surfaces, different

probability methods aregenerated,suchas the first-order reliability method (FORM), second-

order reliability method (SORM) and higher-orderreliability method (HORM).

Most of the approximationspresentedin the literature werebasedon function and gradient

information at a singlepoint and constructedby using the first-order Taylor seriesexpansion

about this point. This method is very popular becausethe function and its derivative values

arealwaysneededfor the searchdirection calculation, sono additional computation is involved

in developing an approximate function. There are severalvariations of first-order Taylor

seriesapproximations, most notably the linear, reciprocal and conservativeapproximations.

Theseapproximationsworkeffectivelyfor stressand displacementtype problems;however,the

truncation error of the first-order approximation might be large and could be inaccurate,even

for designpoints closerto the expansionpoint. The accuracyof the first-order approximations

may be increasedin somedisciplinesby retaining higher-orderterms in Taylor seriesexpansion,

such as the quadratic approximation. This requiresthe calculation of higher-order function

derivatives that may not be availableanalytically.

Both the abovefirst-order and higher-orderapproximationsare formed by using the first-

order and higher order Taylor seriesexpansion,respectively,in terms of direct and reciprocal

designvariables. The intervening variables are fixed in theseapproximations. For example,

the linear approximation can be consideredas the first-order Taylor seriesexpansionin terms

of the intervening variables y_ = xi. The reciprocal approximation is the first-order Taylor

1__ As we know, for the trussseries expansion in terms of the intervening variables yi -- _.
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structures with stress and displacement functions, using the reciprocal intervening variables

can dramatically improve the approximation accuracy. However, the use of fixed intervening

variables is difficult to adopt for different problems, and selection of the intervening variables

is also quite difficult and requires tremendous experience and knowledge. Therefore, the use of

adaptive intervening variables for different types of problems is necessary.

Furthermore, both the first-order and higher-order Taylor series approximations are based

on a single point. As the structure is being resized, new approximations are constructed at new

design points. In this approach, previous analyses' information is discarded and not used to

improve the later approximations. Recently, more accurate approximations have been developed

by using more than one data point, such as two points, three points or more. These multi-point

approximations use current and previous information to construct approximations. Since more

information about the function values and gradients at the known points are provided, the

multi-point approximation is usually able to automatically adust its nonlinearities by itself.

Therefore, the multi-point approximations are adaptive and provide better accuracy than the

single point approximations. Also, no higher-order gradients are needed in constructing the

approximations.

In this chapter, the use of approximations and advantages are discussed in Section 2.1.

The availability of gradients is given in Section 2.2. The approximations constructed based

on a single point are introduced in Section 2.3, which includes the three most commonly-

used approximations (linear, reciprocal, and conservative approximations). The two-point

approximations which were developed in Wang and Grandhi's earlier work are given in Section

2.4, which includes the two-point adaptive nonlinear approximation (TANA) and improved two-

point adaptive nonlinear approximation (TANA2). The multi-point Hermite approximation

is introduced in Section 2.5. The approximation comparisons of various approximations are

discussed in Section 2.6. The relevant references for the approximations are listed in Section

2.7.
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2.1 Use of Approximations and Advantages

As mentioned above, the function approximations are particularly useful when the

computational cost of a single evaluation of the object functions, constraints, and their

derivatives is very large compared to the computational cost associated with the optimization

operations, such as the calculation of search directions. A typical situation is when a finite

element model with thousands of a degrees of freedom is used to analyze a structural design

that is defined in terms of a handful of design variables. It then pays to reduce the number of

exact structural analyses required for the design process by applying optimization algorithms

to a model of the structure based on approximations.

In general, the optimization problem is stated as

Minimize f(X) (2.1a)

Subject to: Gj(X) _< 0, (j = 1,2,...,J) (2.1b)

x < < (i = 1,2,...,N) (2.1c)

where X represents the vector of design variables, f(X) is the objective function, Gj(X) is

the jth behavior constraint, and x L and x_ are the lower and upper limits on the ith design

variable, respectively, and J and N denote the number of behavior constraints and design

variables, respectively.

Based on the approximations, such as linear, reciprocal, conservative, two-point adaptive

nonlinear, multivariate Hermite, etc., the original optimization problem of Eq. (2.1) is changed

into a sequence of explicit approximate problems as follows:

Minimize f(k)(X) =/(X) (2.2a)

Subject to: G_(X) = Gj(X) _< 0, (j = 1,2,..., J)

z L _< z, _< x U (i = 1,2,...,N)

(2.2b)

(2.2c)
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where k is the iteration number.

Because of the approximation involved, exact function evaluations are avoided in solving

(2.2a) and (2.2b), and computational savings are realized. Only at the convergent solution

of the problem (2.2), exact objective and constraint function calculations are needed, and the

approximations based on the information of the convergent point are constructed. The process

is repeated until convergence.

However, the approximations may result in significant errors if the nonlinearities of the

approximation are not closer to those of the original objective and constraint functions.

Due to inaccurate approximations, optimization algorithms may be difficult or may never

converge without a proper choice of move limits. To avoid this problem, constructing accurate

approximations is very important.

In summary, the approximations play an important role in the optimization of large-scale

or complex structures. The approximations can reduce the high computational cost required

in evaluating objective function and constraints hundreds or thousands of times. Also, the

approximations are able to transfer the analysis package into the optimization program when

the structural analysis program is large, or if the analyst does not have access to the source

code of the program.

2.2 Availability of Gradients and Their Use

An important task in optimal design is to obtain sensitivity derivatives, which are used for

studying the effect of parametric modifications, calculating the search directions for finding an

optimum design, and constructing function approximations. The calculation of the sensitivity

of structural response to changes in design variables is often the major computational cost of

the optimization process. For a simple truss problem with n design variables, computing the

first-order gradients in terms of all the design variables requires n FE analyses. Computing the

gradients of constraint functions will be very expensive if the problem has a large number of
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designvariables. Also, for somecomplexproblems, the sensitivity analysismay not be easily

computed. The approximate gradientsinformation hasto beusedfor optimization.

One commonly used technique for calculating derivatives of responsewith respect to a

designvariable is the finite-differenceapproximation. This techniquerequiresonly the function

estimations, so it is very useful whenthe exact derivativesaredifficult to determine. However,

the finite-difference is often computationally expensiveand hasaccuracyproblems.

Use of approximations is an efficient way to obtain the sensitivity derivatives. Once

the approximation is constructed, the derivatives can be easily calculated from the explicit

functions. If the approximation is closerto the original function at the designpoint, it provides

goodsensitivity estimationsat the point. Also,no extra exactanalysesaxeneededin computing

the derivatives.

2.3 One-point Approximations

In this section, several one-point approximations (linear, reciprocal and conservative) are

introduced. One-point approximation means that the approximation is constructed based on

the function value and gradients information of one point. Usually, this point is selected as

the most current point in the iteration process. The most commonly used approximations of

objective and constraint functions are based on one-point information, i.e., the function and

its first derivatives at a single design point.

2.3.1 Linear Approximation

The simplest approximation is the linear approximation, which is a first-order Taylor series

expansion at a design point XI:

_(X) = g(X1) + _ Og(Xl) (x, - x,,1) (2.3.1)
i=l OXi

where x_ is the i th component of variables X and xi,1 is the i _h component of the known point X1.

This approximation is very popular since the function and its derivatives are needed in search
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direction calculation, and no additional computation is involved in developing the approximate

function. However, for many applications the linear approximation is inaccurate even for design

points X that are close to X1. Accuracy can be increased by retaining additional terms in the

Taylor series expansion, but it requires the costly calculation of higher-order derivatives. A

more attractive alternative is to find intervening variables that make the approximate function

more linear. One of the popular intervening variables is the reciprocal of xi, which makes the

following reciprocal approximation.

2.3.2 Reciprocal Approximation

The reciprocal approximation is the first-order Taylor series expansion in the reciprocals of

the variables yi = 1/xi (i = 1, 2, ..., n). It can be written in terms of the original variables x_:

_(X) = g(X1) + _ Og(X,) (x, - x,,1)( x''l (2.3.2)
--i-()

This approximation has been proven efficient for truss structures with stress and displacement

constraints because in statically determinate structures, stress and displacement constraints

are linear functions of the reciprocals of the design variables X.

However, there is one problem in the reciprocal approximation given in Eq. (2.3.2). The

approximation becomes unbounded when one of the variables approaches zero. A modified

approximation was presented by Haftka, et al in Ref. [2], which is

_,_(X) = g(X2) + _ Og(X2) (x ,,x,_ + x,,2) (2.3.3)
i=, cOxl , ,- x_,2)_ xm_ + xi

where )(2 is the current point. The values of xm_ were evaluated by matching with the derivatives

at the previous point X,, that is

cOg(X,) (zm, + x,,2._2cog(X2) (2.3.4)

or

xmi - z_,2 - T/iz_,l (2.3.5)
r/_ - 1
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where

ag(x ),og(x ) (2.3.6)
Ozi / Ozi

When the ratio of the derivatives is negative, the derivatives at the previous point X1 are not

matched. In that case, x_i is set to a very large number, so that the linear approximation is

used for the ith variable.

This modified reciprocal approximation is a two-point approximation because two-point

information is used to construct the approximation given in Eq. (2.3.3).

2.3.3 Conservative Approximation

Conservative approximation, as presented by Starnes and Haftka, 1979 in Ref. [3] is a

hybrid form of the linear and reciprocal approximations and is more conservative than both.

The approximation is given as

Og(Xl)
9(X) = g(X1) + _ Ci--(xi - xi,1) (2.3.7)

i=1 C_Xi

where

='-_-_ if xil_ °-_- <0
C_ = _' ' ' °=' - (2.3.8)

1 otherwise

In the above approximation, Ci = 1 corresponds to the linear approximation, and Ci = xi,a/x{

corresponds to the reciprocal approximation.

The conservative approximation is not the only hybrid linear-reciprocal approximation

possible. Sometimes physical considerations may dictate the use of linear approximation for

some variables and the reciprocal for others. However, as can be easily checked, the conservative

approximation has the advantage of being convex. If the objective function and all the

constraints are approximated by the conservative approximation, the approximate optimization

problem is convex. Convex problems are guaranteed to have only a single optimum, and they

are amenable to treatment by dual methods.
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2.4 Two-point Adaptive Nonlinear Approximations

In this section, several two-point approximations are introduced. These approximations

were presented by Wang and Grandhi in Refs. [4 - 6]. Two-point approximation means that

the approximation is constructed based on the function values and gradients information of two

points. Usually, one is selected as the most current point and another is the previous point in

the iteration process.

Adaptability represents the capability of automatically matching the nonlinearity of various

functions. For one-point approximations, the nonlinearity of the approximations is fixed since

the intervening variables are fixed. In general, selecting appropriate intervening variables

is extremely difficult for different engineering problems. For the stress and displacement

constraints of the truss structures, the reciprocal approximation can yield accurate results

by using the reciprocals of the design variables. However, these reciprocal intervening variables

may not be good for other constraints of truss structures or other structures. For practical

engineering problems, the use of fixed intervening variables is difficult to adopt for different

constraints, and selection of the intervening variables is also quite difficult and requires

tremendous experience and knowledge. Therefore, the use of adaptive approximate models

or changeable intervening variables for different types of problems is necessary. The following

two-point approximations are capable of adjusting their nonlinearities automatically by using

two-point information.

2.4.1 Two-point Adaptive Nonlinear Approximation (TANA) [4]

TANA is a two-point adaptive approximation and was presented by Wang and Grandhi in

Ref. [4] using adaptive intervening variables. The intervening variables are defined as

yi = x_, i = 1, 2, ..., n (2.4.1)

where r represents the nonlinearity index, which is different' at each iteration, but is the same
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for all variables. The nonlinearity index was determined by matching the function value of the

previous design point; that is, r is numerically calculated so that the difference of the exact

and approximate g(X) at the previous point X1 becomes zero,

n

l_ Oa(X:) z,- x"2 Oxi ( _,1 - xi,_)} = 0 (2.4.2)g(xl) {g(x2) + ; =

r can be any positive or negative real number (not equal to zero). The two-point adaptive

nonlinear approximation (TANA) is

n X
_(X) g(X_)+ 1 _ ___0g(_) x_

= -2..xi,2 _ (x_-i,2) (2.4.3)
r i=1 s

This approximation has been extensively used in truss, frame, plate and turbine blade structural

optimization and probabilistic design. The results presented in Refs. [4 - 6] demonstrate the

accuracy and adaptive nature of building a nonlinear approximation.

Another two-point approximation, Two-point Exponential Approximation (TPEA) [7], is

similar to the above TANA. The TPEA method has N different nonlinear indices, Pi, for each

variable and matches the derivatives of exact and approximate function values at the previous

point to evaluate pi, while TANA matches only the function values of exact and approximate

calculations at the previous point for finding r. The TPEA method uses the derivative values

at two points and the function value at the current point, while TANA uses the function values

at two points and the derivative values at the current point. To utilize more information in

constructing a better approximation, the TANA1 and TANA2 combine TANA and TPEA and

produces improved approximations. In TANA1 and TANA2, both function and derivative

values of two points are utilized in developing the approximations.
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2.4.2 Improved Two-point Adaptive Nonlinear Approximation(TANA1) [6]

The intervening variables given in Ref. [7] are used, that is,

y_ = ziP', i = 1, 2, ..., n (2.4.4)

where p_ is the nonlinear index, which is different for each design variable. The approximate

function is assumed as

n Og(X1)
1 --Pi

E xi'l (XPi -- xpi _ (2.4.5)_(x) = g(x,) + ax, p_ ,,lJ + _,
i=1

where el is a constant, representing the residue of the first-order Taylor approximation in

terms of the intervening variables Yi (yi = x_'). Unlike the other two-point approximations,

this approximation is expanded at the previous point X1 instead of the current point X2. The

reason is that if the approximation was constructed at X2, the approximate function value

would not be equal to the exact function value at the expanding point because of the correction

term el. In actual optimization, to obtain more accurate predictions closer to the current point,

X1 is selected as the expansion point. The approximate function and its derivative values are

matched with the current point.

By differentiating Eq. (2.4.5), the derivative of the approximate function with respect to

the ith design variable xi is written as

O_(X) _ ( _)p,__ cOg(X1) (2.4.6)_x/ " O-_x_ ' i=l,2,...,n

From this equation, p_ can be evaluated by letting the exact derivatives at X_ equal the

approximation derivatives at this point, that is

og(x2) o_(x:) _ _ ,Ox, _ - ( )p,_,Og(X1) i= 1,2,...,n (2.4.7)

where p_ can be any positive or negative real number (not equal to zero). Eq. (2.4.7) has n

equations and n unknown constants. It is easy to solve because each equation has a single
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unknown constant p_. Here, a simple adaptive search technique is used to solve them. The

numerical iteration for calculating each pi starts from pi=l. When pi is increased or decreased

by a step length (0.1), the error between the exact and approximation derivatives at X2 is

calculated. If this error is smaller than the initial error (e.g. corresponding to pi = 1), the

above iteration is repeated until the allowable error (0.001) or limitation of pi is reached, and

p/is determined. Otherwise, the step length of pi is decreased by half, and the above iteration

process is repeated until the final pi is obtained. This search is computationally inexpensive

because Eq. (2.4.7) is available in a closed form and is easy to implement.

Eq. (2.4.7) matches only the derivative values of the current point, so a difference between

the exact and approximate function values at the current point may exist. This difference is

eliminated by adding the correct term, cl, in the approximation, el is computed by matching

the approximate and exact function values at the current point:

k 1-pie, = g(x2) - + p, '
i=1

(2.4.8)

¢1 is a constant during a particular iteration. This method is simple and more importantly the

new approximation function and derivative values are equal to the exact values at the current

point.

2.4.3 Improved Two-point Adaptive Nonlinear Approximation (TANA2) [6]

TANA2 uses the intervening variables given in Eq. (2.4.4). The approximation is written

by expanding the function at X2:

,,.+-= xp , . 1 ,_-..,)xp, - xv , _2 (2.4.9)
i=x cOx_ Pi 2 _2i_= k , i,2J

This approximation is a second-order Taylor expansion in terms of the intervening variables

yi (yi = x_"), in which the Hessian matrix has only diagonal elements of the same value e=.

Therefore, this approximation doesn't need the calculation of the second-order derivatives.

Unlike the original second-order approximation, this approximation is expanded in terms of the
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intervening variables yi, so the error from the approximate Hessian matrix is partially corrected

by adjusting the nonlinearity index p_. In contrast to the true quadratic approximation, this

approximation is closer to the actual function for highly nonlinear problems because of its

adaptability. Eq. (2.4.9) has n + 1 unknown constants, so n + 1 equations are required.

Differentiating Eq. (2.4.9), n equations are obtained by matching the derivatives with the

previous point XI:

Og(Xl) __ (_)p,_ltOg(X_) _ IxP' -P' _-P'-_- i 1,2, n (2.4.10)

Another equation is obtained by matching the exact and approximate function values with the

previous point X1, that is

+ (2.4.11)
g(Xl) ---- g(X2) _- i--, Ozi Pi k i,1 _.O82i__1 i,2}

There are many algorithms for solving these n + 1 equations as simultaneous equations. Again,

a simple adaptive search technique is used. First, e2 is fixed at a small initial value (0.5),

the numerical iteration described in Section 2.4.2 is used to solve each pi, and the differences

between the exact and approximate function and derivative values at X1 are calculated. Then,

¢2 is increased or decreased by a step length (0.1), pi, and the differences between the exact

and approximate function and derivative values at X1 are recalculated. If these differences are

smaller than the initial error (e.g. corresponding to as = 0.5), the iteration is repeated until

the allowable error (0.001) or limitation of e2 is reached, and the optimum combination of ¢2

and pi is determined.

In the TANA2 method, the exact function and derivative values are equal to the approximate

function and derivative values, respectively, at both points. Therefore, this approximation is

more accurate than others.

2.5 Multi-point Hermite Approximation

In the literature, the Hermite interpolation scheme is presented for a single variable by using
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multiple data points. In this work, this concept is extended for multi-dimensional problems.

The advantage of using Hermite interpolation is that it makes use of both function and

derivative information in building the approximation. The interpolating polynomial retains the

same function and derivative values as the original information at each of the known data points.

The Hermite p-point formula gives accurate results when the function to be approximated is

identified with any polynomial of degree not exceeding 2p - 1 [8]. This approximation can be

applied for large scale problems with hundreds of design variables because the approximation is

constructed only by simple algebraic calculations. Mathematical details of this approximation

are described below.

For a univariate function f(x), assuming that the values of the function and first-order

derivatives at p different points xi (i = 1,2, ...,p) are yi = f(xi) and y_ = f'(xi), the Hermite

interpolation formula can be given as in Ref. [8]:

P

](x) = _{y, + [y_- 2_<(x,)](_ - _,)}h_(_) (2.5.1a)
i----1

where
P

<(_) = II x - _j (2.5.1b)
xi -- xjj=l,jy£i

P 1
<(x,) = _ (2.5.1c)

j=l,j#i xi _ Xj

At each point of xi (i=l,2,...,p), ](x) satisfies

](xi) =Yi (2.5.2a)

]'(x,)=_i

To construct a multivariate Hermite approximation, the above Eqs.

can be extended for n variables as

hi(S) =
(s- &)r(&_ &)

I] (s_ &)_(s_-&)
j=_,i#i

(2.5.2b)

(2.5.1b) and (2.5.1c)

(2.5.3a)
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rOh,(S),ah,(S) Oh,(S)]r
vhi(S) ='081 0s2 '"" Os-7

P

0h,(s) _ h,(s) E _k,,- _k,j
o_ (s- sjr(s_- sj)j=l,j#i

(2.5.3b)

k = 1, 2, ..., n (2.5.3c)

where S is a vector of {sl,s2, ...,sn}, which can represent original variables or intervening

variables, n is the number of variables, and sk,i represents k th variable of the ith data point.

Using Eqs. (2.5.3a), (2.5.3b) and (2.5.3c), the one-dimensional Sermite interpolation given

in Eq.(2.5.1a) can be extended as the following multivariate Hermite expression:

P

](s) = _{g(s,) + [vg(S,)- 2g(s,)v h,(s,)]Rs- s,)}_(s) (2.5.4)
i=1

where g(S_) and Vg(S_) are the function value and gradient vector at the ith known point,

respectively, vh_(S_) is obtained by substituting S_ into Eq. (2.5.3c), in which h_(S_) becomes

1 (proof is given in Appendix A).

Differentiating Eq. (2.5.4), a gradient formula of the function approximation can be obtained

as

vi(S)
P

E{2h/(S) V h{(S){g(Si) + [vg(Si)- 2g(S{) V hi(S{)IT( S- S,)}
i----1"

+_,:(Sl[ve(S,) - 2g(s,)v h,(s,)]} (2.5.5)

Unlike the two-point Hermite approximation presented in [2], the multivariate Hermite

formula given in Eq. (2.5.4) reduces to the one-dimensional Hermite interpolation given in

Eq.(2.5. la) when n = 1. Furthermore, Eq. (2.5.4) can be used for multiple point approximation,

not just limited to only two points. The two-point Hermite approximation in [2] is based on

projection of a point onto the line connecting the two known points. The function f(X) is

first approximated by a cubic Hermite polynomial at the projection point, and then linearly

extrapolated to the test points. It can be used only for two-point approximations because

the cubic polynomial is derived from two-point Hermite formula of Eq. (2.5.1a). The present
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p-point n-dimensional Hermite formula is an explicit function with a 2p - 1 polynomial degree,

which possesses the same value and the same derivatives at each of the p data points as the exact

function. The demonstration of this characteristic is given in Appendix A. The nonlinearity

of the Hermite approximation will change as the number (p) of the known points increases

because it is a function with a 2p - 1 polynomial degree. In order to control the nonlinearity

and make the constructed approximations closer to the actual nonlinear functions, two types

of intervening variables are given below.

2.5.1 Preselected Intervening Variables

Usually, fixed types of intervening variables are selected in terms of element properties of

the actual problem. For example, for truss structures with stress and displacement constraints,

the intervening variables can be assumed as the reciprocal of the physical variables so that

the behavior functions are fairly linear. For frame structures with displacement constraints,

the reciprocal section properties can be selected as the intermediate variables [9]. It has been

demonstrated that the function approximations obtained by selecting appropriate intermediate

design variables and then expanding using the Taylor series are closer to the actual constraints

for some of the structural elements.

The preselected intervening variables can be written as

sk = T_(X) k = 1, 2...n (2.5.6)

in which Tk(X) is a function of origina ! variables, X. For truss and frame structures, Tk(X) = x_k

is an example. The value r represents the preselected nonlinearity in terms of variables X. For

the above mentioned structures, r = -1 is often used in the Taylor series expansion. For the

present Hermite approximation, the value of r can be controlled by

(2p - 1)r = r0 (2.5.7)

where r0 represents the actual nonlinearity in terms of variables T(X). Eq. (2.5.7) makes
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the nonlinearity of the constructedapproximation have the samenonlinearity as the actual

function.

Many researchershave shown that the selection of appropriate intervening variables

improvesthe quality of approximations;however,they requireexperienceand knowledge. Often

finding intervening variablesis extremelydifficult for somecomplexmultidisciplinary problems.

Therefore,useof an automatedadaptive interveningvariablescalculation for certain classesof

problemssuchasaeroservoelasticity,structural control, probabilistic analysis, etc. is necessary

where the relationships are not transparent.

2.5.2 Adaptive Intervening Variables

Adaptive intervening variables are denoted as S = (sl, s2, ..., sn) T.

" k = (2.5.s)8k -_ X k

where xk (k = 1,2,...,n) are the original design variables, and r represents the nonlinearity

index, which is different at each iteration, but the same for all variables. In order to determine

this index, a feedback formula based on multiple point information is established as follows.

Let the value of approximate function ](S) given in Eq. (2.5.4) at the remaining one point (a

known point except p of the earlier used points), for example Y equal the value of the exact

function g(Y) at this point, that is

](S(Y))=g(Y) (2.5.9)

where Y is a selected point for comparing Hermite approximation and computing the r value.

The most recent data point is used for computing the r value so that the function behavior

around the current design vector is represented. Using Equations (2.5.3), (2.5.4) and (2.5.8),

the nonlinearity index can be obtained from the following multi-point feedback formula:

g(S(Y)) - {g(S(Xi)) + - k,, [ Ozk
"i=1 r k=l
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= 0

where Oh,(S(X_))/Oxk can be obtained from

oh,(s) r4_, Oh,(S)

(2.5.10)

(2.5.11)

The nonlinearity index r is numerically solved. Equation (2.5.10) may result in more than

one root, either positive or negative. The r value closest to unity is taken as the root because

the intervening variables resemble the original variables, and no additional effort is needed for

finding the intervening variables.

Similarly, the derivatives of ](S) with respect to original variables xk can be obtained as

Of(S) rx__lf(S ) (2.5.12)

2.6 Approximation Comparisons

Several examples are selected to compare the accuracy of the approximations introduced

above. The relative and absolute errors are calculated as follows:

Exact - Approximation
Relative Error= Exact (2.6.1a)

Absolute Error = Exact- Approximation (2.6.1b)

The examples include explicit and implicit constraint fufictions. The constraint function of

the 313-member frame structure requires a finite element analysis. In all of the examples, the

test points are derived using

X = Xo + asD (2.6.2)

where X0 is an initial point, which is defined as the expanding point for all the approximations

except TANA1 and Hermite. Instead, it is defined as the matching point for TANA1 and

Hermite. as is a step length, and D is a direction vector which is selected as D = {1, 1, 1, 1...} T
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for case1, D = {-1, 1, -1, 1, ...)T for case 2, D = {1,0, 1, 0,...} T for case 3, and D = {0, 1, 0, 1,

...}T for case 4.

Example 2.1

This example is taken from Ref. [10], and the constraint function is defined as

10 30 15 2 25 108 40 47
--+--+--+_+--+_+--+---1.0

g(X)-- Xl x31 x2 x 3 x3 x 3 x4 x 3

All of the approximations except TANA1 and Herimite are expanded at the point X2(1, 1, 1, 1),

and the previous point is selected as )(1(1.2,1.2, 1.2,1.2). TANA1 is expanded at X1 and

matched with the values at X2. The nonlinearity index r for the Hermite approximation

with adaptive intervening variables is determined by matching the function value at X2. The

two-point Hermite approximation is based on X(0.5, 0.5, 0.5, 0.5) and X(1.2, 1.2, 1.2, 1.2). The

three-point Hermite approximation is based on X(0.5, 0.5, 0.5, 0.5), X(0.75, 0.75, 0.75, 0.75) and

X(1.2, 1.2, 1.2, 1.2). The relative errors of several methods for four cases are plotted in Figs.

2.1a, 2.1b, 2.1c and 2.1d for four cases. Fig. 2.1a shows that when design variables are

changed along the same direction as X1 and X2 points (case 1), the two-point and three-point

approximations have the best accuracy (the relative errors are almost zero everywhere). TANA-

2 also has very good accuracy, in which the absolute values of relative errors are smaller than

7% everywhere. The errors of TANA-1 and TANA are smaller than 20% everywhere. TANA-2,

TANA-1 and TANA2 have lower errors (almost zero) when czs > 0 because the second point lies

on the right side of the c_s axis. For the other three cases, the second point X1 does not lie in the

same direction as D. When design variables xl and x3 are changed along an opposite direction

of x2 and x4 (case 2), TANA2 has the smallest errors when c_s > 0, while TANA has the best

accuracy when or, < 0. TANA1 also works well and has the same results where the errors are

smaller than 9% everywhere. The two-point and three-point Hermite approximations are better

than the linear and reciprocal approximations, but they are not as good as TANA-2, TANA-1

and TANA. When the design variables are changed only along xl and x3 (case 3), TANA2 has
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very small errors (smallerthan 4%), and TANA1 hasalmostthe sameaccuracyasTANA2. The

two-point and three-point Hermite approximationsaregood when a_ > 0. When the design

variables are changed only along x_ and x4 (case 4), TANA2 and TANA1 are accurate when

as > 0, and TANA has the lowest errors when a_ < 0. The two-point and three-point Hermite

approximations are good when a, > 0, but they don't provide much improvement compared

with the linear and reciprocal approximations. For all four cases, the relative errors of linear

and reciprocal approximations are large. TANA has a single nonlinearity index r which is equal

to-2.7. The nonlinearity indices for TANA1 ,pi, are -2.7625, -1.5,-2.825,-2.4875 for xl, x2, x3,

and x4 and ¢1 is -0.0862. The nonlinearity indices for xl, x2, x3 and x4 in TANA2 method are

-2.7375, -1.45, -2.825 and -2.475, respectively, and e2 is 0.5527. The nonlinearity indices r for

the two-point and three-point Hermite approximations are -2.469, -1.436, respectively.

Example 2.2

The three-bar truss example shown in Figure 2.2 is taken from Ref. [11]. The truss is

designed subject to stress and displacement constraints with cross-sectional areas AA, AB, and

Ac (AA = Ac) as design variables. The approximations of a member C stress constraint are

examined. The stress constraint using normalized variables is written as

2
g(x) = 1+

3xl x2 + 0.25Xl

g(X) is expanded at the point X0(1.0,1.0) for gt, g_, TANA, TANA-1 and TANA-2

approximations. The nonlinearity index r, for two-point, three-point and four-point Hermite

approximations with adaptive intervening variables, is determined by matching the function

value at this point. The point X1(1.5, 1.5) is the second point for TANA, TANA-1 and TANA-

2 to calculate the nonlinearity index rl and pi. The two-point, three-point and four-point

approximations are constructed based on selected data points which are similar to the points

generated during the optimization process. The results comparison is shown in Table 2.1, which

shows that the Hermite approximations have smaller errors, and TANA, TANA-1 and TANA-
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2 have the same accuracy as the reciprocal approximation because the nonlinearity index is

equal to -1. Comparing the results of two types of intervening variables, the results of type II

intervening variables are again better than those of type I for most of the points.

Example 2.3

This example has azl implicit constraint function requiring a finite element analysis. The

frame structure shown in Fig. 2.3 is modelled with 313 beam elements with I-sections. The

cross-sectional areas of all members are selected as the design variables. The vertical loads at

nodes 15, 16, 88, 89 are -26, -30,-18,-20 kips, respectively; the horizontal loads at nodes 6, 11,

17 through 65 by 3, 68 through 82 by 7, and 90 through 175 by 5 are 4 kips; and the horizontal

load at node 1 is 2 kips. The approximation to the vertical displacement d at the tip point
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(node 16) is examined, which is an implicit function of 313 design variables and is written as

g(X) = d/dlim - 1

where dzi,_ is the displacement limit of 4.0 in. Young's modulus is 2.9 x l0 T psi, and the

Possion's ratio is 0.3. The initial cross-sectional areas X0 are 30.59 in 2, and the normalized

design variables are defined as
X

)_- -- m
Xo

All of the approximations except TANA1 and Hermite are expanded at the point X2(1, 1,..., 1).

The previous point is selected as X1(1.25, 1.25,...,1.25) for case 1 and X1(1.2,0.8,1.2,0.8,...,1.2)

for case 2. TANA1 is expanded at X1 and matched at X2 for two cases. The absolute errors

of all the approximations are calculated using Eq. (2.6.1b) to avoid the numerical problems

in computing the relative errors when the exact g(X) values are close to zero. The results

comparison of several methods is shown in Figs. 2.4a and 2.4b. Fig. 2.4a shows that when the

design variables are changed along the same direction, the errors of TANA TANA-2 and two-

point Hermite are almost zero. TANA-1 has good accuracy when as is greater than zero. Fig.

2.4b shows that when the design variables are changed along D = {-1, 1, -1, 1,...-1} T (case 2),

TANA and two-point Hermite have the lowest errors, and TANA1 and TANA2 also have good

accuracy; they are much better than the linear and reciprocal methods. The results indicate

that the proposed approximations have very good accuracy even for large scale problems with

hundreds of design variables.

2.7 Summary of Approximations

Multi-point function approximations are developed for the mathematical optimization and

probability analysis of structures. In the two-point approximations (TANA, TANA-1 and

TANA-2), two-point information is used to construct the approximations. In particular, TANA-

1 and TANA-2 app.roximations use both function values and gradients at two points to construct
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the approximations. The intervening variables with adaptive nonlinearity index/indices are

used to make the approximations closer to the actual nonlinear functions. TANA reproduces

exact function values at two points and exact gradients at the current point. TANA-1

reproduces exact gradients at two points and exact function values at the current point. TANA-

2 reproduces exact function values and gradients at both points. The Hermite interpolation

concept available for a single variable is extended to multidimensional problems by retaining

the property of the same function and gradient values at the known data points. Two types

of intervening variables are used along with the Hermite approximation for demonstrating the

advantages of having adaptive intervening design variables. These intervening variables attempt

to make the approximations closer to the actual nonlinear functions.

In the first example with high nonlinearity, 2-point and 3-point Hermite approximations

produce the best results as design variables are changed along the same direction for case 1.

However, in the other three cases, 2-point and 3-point Hermite approximations are not better

than TANA, TANA-1 and TANA-2. The Hermite approximations, particularly for 3-point

approximations, slightly oscillate around the known points so that some local points of the

approximations are generated. In the last two structural examples, TANA-2 and the Hermite

approximations produce very good results.

The computational results indicate that the Hermite approximation can provide very

accurate results when the test points are closer to the known data points or when they

interpolate. However, for some cases, it may result in an approximation with multiple local

points. TANA1, TANA2 and TANA can provide better accuracy than the linear and reciprocal

methods for highly nonlinear problems where the functional dependency on design variables is

difficult to predict. TANA2 is better than TANA and TANA1 for most cases. For some cases,

TANA-2 could be slightly less accurate than the Hermite approximation, but it is much more

stable than the Hermite approximation. The accuracy improvement of TANA1 compared to

TANA2 is not clearly evident, and it is better than TANA for only a few cases. TANA works
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verywell for the complexproblems(the last two examples)evenwith a singlenonlinearity index.

The TANA, TANA-1 and TANA-2 approximationsperform extremely well in extrapolating a

function. Theseadaptivetwo point approximationsarehighly effectivefor largescalestructures.
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CHAPTER 3. SAFETY INDEX AND MPP CALCULATIONS

3.1 Limit State Function

If a structure or part of a structure exceeding a specific limit is unable to perform a required

performance, this specific limit is called a limit state. There are two kinds of limit states: one is

the load-bearing capacity, and the other is the normal performance. The former mainly concerns

the structural safety, and the latter concerns the structural applicability and durability. The

structure will be considered unreliable if the failure probability of the structural limit state

exceeds the required value.

Assuming that the reliability of the structure depends upon n independent random variables,

X = {xl, x2, .... , x,_} T, the state function of the structural reliability is

Let

g(X)=g(xl, (3.1.1)

g(X) = g(xl,x2, ...,x_) = 0 (3.1.2)

Eq. (3.1.2) is the limit state function of the structural reliability, which separates the design

space into 'failure' and 'safe' regions, i.e.,

g(X) > O, xi E Safe region (3.1.3a)

g(X) = O, x, e Failure surface (3.1.3b)

g(x) < o, e Failureregion (3.1.3c)

The simplest example of the limit state function can be given as the following stress-strength

problem:

g(R,S) = R- S = 0 (3.1.4)
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Fig. 3.1 Limit State Surface between Failure and Safe Regions

where R is the strength, S is the stress resultant, and g(R, S) is the limit state function of the

structural reliability. Fig. 3.1 shows that the limit state of the line, R=S, separates the design

space into two regions: one is the safe region of S < R, and the other is the failure region of

S>R.

For most of structures, the limit states can be divided into three categories:

1. Ultimate limit states are related to a structural collapse of part or all of the structure.

Examples of the most common ultimate limit states are corrosion, fatigue, deterioration, fire,

plastic mechanism, progressive collapse, fracture, etc. Such a limit state should have a very

low probability of occurrence, since it may lead to loss of life and major financial losses.

2. Damage limit states are related to the damage of the structure. Examples of damage limit

states are excessive or premature cracking, deformation or permanent inelastic deformation, etc.

Such a limit state is often included in the above category.

3. Serviceability limit states are related to disruption of the normal use of the structures.
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Examplesof serviceability limit states are excessive deflection, excessive vibration, drainage,

leakage, local damage, etc. Since there is less danger than in the case of the ultimate limit

states, a higher probability of occurrence may be tolerated in such limit states.

3.2 Reliability Index / Safety Index

For simplicity, the limit state function given in Eq. (3.1.4) is taken as an example again.

The probability of failure is computed as

= J_ fns(R,S)dRdS (3.2.1)

where fns(.) is the joint probability density function of R and S. f_ is the failure region modeled

by the limit state function, g(X) < 0, as shown in Fig. 3.1.

Assuming that the strength (R) and stress (S) are random variables normally distributed,

the limit state function g(R, S) is normally distributed. According to Eqs. (B.4) and (B.6)

given in Appendix B, the mean value and standard deviation of the function g(R, S) are given

as

_tg = #n - #s (3.2.2)

cry = _/a_ + a_ (3.2.3)

where #n and #s are the means of R and S, respectively, and crn and as are the standard

deviations of R and S, respectively. The probability density function of g(R, S) is

The failure probability is

(3.2.4)

fPS = fg(g)dg (3.2.5)
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Fig. 3.2 Geometrical Illustration of the Corneil Reliability Index, [3c, (I)

and the reliability or probability is

P = 1 - Pi = fg(g)dg

By introducing the standard normalized variable u with

U --

when g = O, the lower limit of u is given as

0 - #g PR - #s
UL--

(3.2.6)

(3.2.7)

(3.2.8)
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and wheng = +oc, the upper limit of u tends to be +oc. When using integral transformation

by considering Eqs. (3.2.4) and (3.2.7), as well as the lower and upper limits of u, Eq.(3.2.6)

becomes

P Z_ I 1 2= )d=
--- i-(I'(- #R-#s )

= i - ¢(-#)

= ff(fl) (3.2.9)

where @(.) is the standard normal cumulative distribution function. # is defined as the

reliability index or safety index for uncorrelated (independent) variables:

fl _ /_g_ /_R-/_s (3.2.10)

ag J4 +

fl is the reciprocal of the estimate of coefficient of variance in g(R, S). If the difference

between the means of the strength and the stress is reduced, fl decreases and then PI increases.

Otherwise, if either aR or as or both are increased, fl will become smaller and hence PI will

increase. Therefore, /3 is a direct measure of the reliability of the structure, and a larger

represents greater reliability or lower probability of failure.

The safety index given in Eq. (3.2.10) is also called the Cornell reliability index, tic, [1].

The geometrical illustration of the Cornell reliability index is shown in Fig. 3.2. In this one-

dimensional case, the failure surface is simply a point g = 0. The idea behind the reliability

index definition is that the distance from location measure/zg to the limit state surface provides a

good measure of reliability. The distance is measured in units of the uncertainty scale parameter

ag. Fig. 3.3 gives further geometrical illustration of the safety index, which shows that the

shaded area to the left of the origin is the probability of failure.

The above one-dimensional geometrical definition of the safety index is often used for
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Fig. 3.3 Geometrical Illustration of the Cornell Reliability Index, [3c, (IX)

describing the Cornell reliability index. A more general definition of the safety index can

be given as follows. Introduce standard normalized random variables of R and S,

/_ _ R - #R, _ _ S - _s (3.2.11)
aR as

where #n and #s are the mean values of random variables R and S, respectively; and

an and as are the standard deviations of R and S, respectively. The limit state surface

g(R, S) = R - S = 0 in the (R,S) coordinate system can be transformed into a straight line in

the standard normalized (/_, S) coordinate system by substituting Eq.(3.2.11)

g(k,_) = kaR- _as + (_R- _s) = 0 (3.2.12)
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The shortest distance from the origin in the (/_, S) coordinate system to the failure surface

g(R, S) = 0 is equal to

(f)p. _ gR - #s (3.2.13)

By comparing Eq. (3.2.10) with this equation, it is obvious that the shortest distance 0P* is

the safety index fl, i.e.,
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f_ = (_p. _ #n -/_s (3.2.14)

The geometrical illustration of the safety index is given in Fig. 3.4. Therefore, a general

geometric definition of the safety index _ is the shortest distance from the origin to the limit

state surface. This definition can be used for not only the Cornell reliability index, but also

general cases, such as the following Hasofer-Lind reliability index. It is necessary to point

out that even though the definition of the safety index can be used for general cases, but Eq.

(3.2.14) can only be applied for the problem having the limit state function given in Eq. (3.1.4)

and the normally distributed random variables R and S. For the nonlinear limit state function

and non-normal distribution variables, the safety index calculations will be given later.

3.3 First-Order Second-Moment (FOSM) Method

In the above sections, the limit state function was considered simply linear and to contain

just two normally distributed variables. However, in practice, the limit state function can

be nonlinear, the size of the random variables X can be very large, and their distributions

can be of other types such as lognormal, Weibull, extreme value, etc. It is necessary that all

uncertainties must be contained in the joint probability density function fx(X) in calculating

the failure probability and the limit state functions. In fact, it is usually extremely difficult or

even impossible to construct the joint density function and/or determine each of the individual

density functions because of the scarcity of statistical data. Even in the case where statistical

information may be sufficient to determine these functions, it is often impractical to perform

numerically the multidimensional integration over the failure region f_ by using numerical

integration or Monte Carlo simulation due to the complexity, nonlinearity and time-consuming

analyses of the limit state functions.

The first-order second-moment (FOSM) method simplifies the functional relationship and

alleviates the above difficulties. The name first-order comes from the first-order expansion of
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the function. In principle, the random variables are characterized by their mean values (first

moments) and standard deviations (second moments). This is possible for any continuous

mathematical form of the limit state equation. The different ways of simplifying the limit

state function form different reliability analysis algorithms. As implied, inputs and outputs are

expressed as the mean and standard deviation. Higher moments, which might describe skew

and flatness of the distribution, are ignored.

3.3.1 Mean Value Method

In the mean value method, the limit state function is linearized by means of the Taylor

series expansion (truncated at the linear terms only) at the mean value point. Assuming that

the X variables are statistically independent, the first-order Taylor series expansion of the limit

state function at the mean # = {_=1, #=2, "-', ]_=n}T is

_(X) _ g(/_)+ (X -/_)g'(#) (3.3.1)

The mean value of the approximate limit state function _(X) is

= g(,)

= g(#=l, #=2, .--, #=,)

The variance of the approximate limit state function _(X) is

Var[_(X)] _, Var[g(#)] + Var[(X - #)g'(#)]

Because

Vat[g(,)]= 0, Wr[9'(,)] = 0

(3.3.2)

(3.3.3)

(3.3.4)

Var[(X-#)g'(#)] = Var[Xg'(#)] - #Var[g'(#)]
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Therefore, the standard deviation of the approximate limit state function is

(3.3.5)

a_(x)

=

The reliability index fl is computed as:

(3.3.6)

/3 = #'_ (3.3.7)
a_

Eq. (3.3.7) is the same as Eq. (3.2.10) if the limit state function is linear. If the limit

state function is nonlinear, the approximate limit state surface is obtained by linearizing the

original limit state function at the mean value point. Therefore, this method is called the mean

value method, and the/3 given in Eq. (3.3.7) is called a mean value first-order second-moment

(MVFOSM) reliability index.

In the general case with the independent variables of n-dimensional space, the failure surface

is a hyperplane and can be defined as a linear failure function:

n

._(X) = Co + _ c/x, (3.3.8)
i=1

The reliability index given in Eq. (3.3.7) can still be used for this n-dimensional case, in which

#_ = co + cx#_l + c2#_2 + ... + c,_#_, (3.3.9)

I Tt
a_ = S" c?cr_ (3.3.10)

i=1
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Example 3.1

The performance function is

in which xl and x2 are the random variables with normal distributions (mean #=1 = #=2 = 10.0,

standard deviation a= 1 = a=2 = 5.0). The mean value method is used to solve the safety index

8.

The mean of the linearized performance function is

#_ = g(#=l,#=_) = 1982.00

The standard deviation of the linearized performance function is

a_ ,/(ag(_,=,,_,,,_),,=,)=+
V 0=1 0z2

= _/(3× 10_×5.0):+ (3× 10:× 5.0):

= 2121.32

From Eq. (3.3.7),the salty index B is

_ #_ _ 1982.00
a_ 2121.32

- 0.9343

The mean value method changes the original complex probability problem into a simple

one. This method directly establishes the relationship between the reliability index and the

basic parameters (means and standard deviations) of the random variables. However, there are

two serious drawbacks in the mean-value FOSM method:

1. Evaluation of reliability by linearizing the limit state function about the mean values

leads to erroneous estimates for performance functions with high nonlinearity, or for large

coefficients of variation. This can be seen from the following mean value calculation of _(X),

assuming that the truncation of the Taylor series expansion after the first three terms is,
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_(x) _ g(_) + (x - _)g'(_)+ (x - _)'.d'(_) (3.3.11)

Based on Eq. (B.4), the mean value of the approximate limit state function j(X) can be

calculated as

Because

,_ _ E[a(,)]+ E[(X - ,)d(,)] + E[(x - '):a"(,)]
2

(3.3.12)

E[g(tt)] = got) (3.3.13)

E[(X - _)g'(#)] = E[Xg'(tt)] - E[pg'(tt)]

= d(,)E(X)- ,g'(,)

= 0 (3.3.14)

E[(x -_")_g"(.)l = ½g"(.)E[(X-,)_1

= lg"(tt)Var(X ) (3.3.15)

From Eq. (3.3.15), it is obvious that the second term of Eq. (3.3.11) depends on the variance

of X and the second-order gradients of the limit state function. If the variance of X is small or

the limit state function is close to linear, the second term of Eq. (3.3.11) can be ignored and

the mean value of j(X) is the same as Eq. (3.3.2). Otherwise, large errors in the mean value

estimation will result.

2. The mean-value FOSM method fails to be invariant with different mechanically equivalent

formulations of the same problem. This is a problem not only for nonlinear forms of g(.), but

also for certain linear forms. Example 3.2 shows that two different equivalent formulations of

the limit state function for the same problem results in different safety indices.
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Fig. 3.5 Simply Supported Beam Loaded at the Midpoint

Example 3.2

This example is taken from Ref. [2]. Figure 3.5 shows a simply supported beam loaded

at the midpoint by a concentrated force P. The length of the beam is L, and the bending

moment capacity at any point along the beam is WT, where W is the plastic section modulus

and T is the yield stress. All four random variables P, L, W, and T are assumed to be

normal distributions. The mean values of P, L, W, and T are 10kN, 8m, 100 × 10-6m 3, and

600 × 103kN/m 2, respectively. The standard deviations of P, L, W, and T are 2kN, 0.1m,

2 × 10-Srn 3, and 105kN/m 2, respectively. Two different equivalent formulations of the limit

state function can be given as

ga(P,L, W,T) = WT-
PL

g2(P,L, W,T) = T--

The safety index for the gl function is

PL

4W
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/31 --
_Tg 1

100 x 10-0 x 600 x 103 1oxs

_/(-2 x 2) 2 + (-2.5 x 0.1) 2 + (600 x 103 x 2 × 10-5) 2 + (100 x 10 -° x 105) 2

= 2.48

and the safety index for the g2 function is

600 x 103 10x8
4xlOOx10 -e

_/(-2 x 104 x 2) 2 + (-0.25 x 102) 2 + (4 x 104) 2 + (1. x lOS) 2

= 3.48

81 and/32 are different even though the above two limit state equations are equivalent.

3.3.2 Advanced First-Order Second-Moment Method - Hasofer and Lind Safety Index

In the previous sections, Figs. 3.2-3.4 showed how the reliability index could be interpreted

as the measure of the distance to the failure surface. In the one-dimensional case, the standard

deviation of the safety margin was conveniently used as the scale. To obtain a similar scale in

the case of more basic variables, Hasofer and Lind (1974) proposed a nonhomogeneous linear

mapping of the set of basic variables into a set of normalized and independent variables u_. Take

the example of the stress-strength given in Section 3.1. Consider the fundamental case with the

independent variables of strength, R, and stress, S, which are both normally distributed. First,

Hasofer and Lind introduced the standard normalized random variables given in Eq. (3.2.11),

and transformed the limit state surface g(R, S) = R - S = 0 in the original (R, S) coordinate

system into the limit state surface given in Eq. (3.2.12) in the standard normalized (R, S)

coordinate system. Here, the shortest distance from the origin to the linear failure surface is
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definedas the safety index 8- The point P*(/_', S*)on g(/_, S)= 0, which corresponds to this

shortest distance, is referred to as the checking point or design point.

X-space U-space

X2

Failure region

112

Failure region

Xl

g(X)=0 g(U)=0

Fig. 3.6 Mapping of Failure Surface from X-space to U-space

In a general case with normally distributed and independent Variables of n-dimensional

space, the failure surface is a nonlinear function:

g(X)=g(zl,x2,...,zn) (3.3.16)
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Transform all the variablesinto their standardizedforms:

Xi -- tZx_
u_ - (3.3.17)

O'xi

where #_, and a_, represent the mean value and standard deviation of x_, respectively. The

mean value and standard deviation of the standard normally distributed variable, u_, are zero

and unity, respectively. Any orthogonal transformation of the standard normally distributed

variables, U = {ul, u2, ..., u,_) T, results in a new set of normalized and uncorrelated variables.

Therefore, the distributions of U are rotationally symmetric with respect to the second-moment

distribution. Based on the transformation of Eq. (3.3.17), the mean value point in the

original space (X-space) is mapped into the origin of the standard normal space (U-space).

The failure surface g(X) = 0 in X-space is mapped into the corresponding failure surface

g(U) = 0 in U-space as shown in Fig. 3.6. Due to the rotational symmetry of the second-

moment representation of U, the geometrical distance from the origin in U-space to any point

on g(U) = 0 is simply the number of standard deviations from the mean value point in X-

space to the corresponding point on g(X) = O. The distance to the failure surface can then be

measured by the safety index function

Z(u) = (uru) u e g(u) = o (3.3.1s)

The safety index _ is the shortest distance from the origin to the failure surface g(U) = O, i.e.

fl= min (uTu) 1/2 (3.3.19)
ueg(u)=o

This safety index is also called the Hasofer and Lind safety index, _HL. The point

U*(u_, u[, ..., u_) on g(U) = 0 is a design point. The values of the safety indices given in

Eqs. (3.3.7) and (3.3.19) are the same when the failure surface is a hyperplane.

The Hasofer and Lind reliability index can also be interpreted as a first-order second-moment

reliability index. The value of _HL is the same for the true failure surface as for the approximate
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tangent hyperplane at the design. The ambiguity in the value of the first-order reliability

index is thus resolved when the design point is taken as the linearization point. The resultant

reliability index is a sensible measure for the distance to the failure surface.

3.3.2.1 Safety Index Model - Optimization Problem

Eq. (3.3.19) shows that the safety index fl is the solution of a constrained optimization

problem in the standard normal space:

Minimize: /3(U) = (uTu) 1/2 (3.3.20a)

S bject to: g(u) =o (3.3.20b)

There are many algorithms available that can solve this problem, such as mathematical

optimization schemes or other iteration algorithms. In Ref. [3], several constrained optimization

methods were used to solve this optimization problem, which included primal (feasible

directions, gradient, projection, reduced gradient), penalty, dual and Lagrange methods. Each

method has its advantages and disadvantages, depending upon the attributes of the method

and the nature of the problem. Unlike the optimization schemes, another class of method is

the iteration algorithm. In the following section, the most commonly-used iteration algorithms,

the HL and HL-RF methods, are introduced to solve the reliability problems.

3.3.2.2 Solve Safety Index Model Using HL Iteration Method [4]

The HL method was proposed by Hasofer and Lind, and the HL-RF method was extended

by Rackwitz and Fiessler based on the HL method to include random variable distribution

information. The HL method is introduced in the following section and the HL-RF method

will be given later. Assume that the limit state surface with n-dimensional normally distributed

and independent random variables X is

g(x)=g(zl,x:,...,z,,)=o (3.3.21)
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This limit state function can be linear or nonlinear. Based on the transformation given in

Eq. (3.3.17), the limit state function given in Eq. (3.3.21) is transferred into

g(U) = g(o'x, ul + I.tx,,o'x2u2 + #x2,...,o'z,,u,., + #x,,) = 0 (3.3.22)

The normal vector from the origin 0 to the limit state surface g(U) generates an intersection

point P*, and this point has been defined as the design point before. The distance from the

origin to the design point is the safety index/3. The first-order Taylor series expansion of g(U)

at the design point U* = {u_, u_, ..., u_} T is

i=1

From the transformation of Eq. (3.3.17), we have

(3.3.23)

Og(U) Og(X)a=, (3.3.24)

The shortest distance from the origin to the above approximate failure surface given in Eq.

(3.3.23) is

i=l Oxi tTxi Ui
OF* = 8=

_i_=l( Og(U'} ff z.] 2

k Oxi * ]

The direction cosine of the unit outward normal vector is given as

(3.3.25)

C03_xl

ag(v.)

= CO30ul = __ Oui

IVg(U')l
0gCx') a

Ozi xi

[ Z..,.._ \ Oxi xi ] J

i=1

= a_ (3.3.26)

where cr_ expresses the relative effect of the corresponding random variable on the total

variation. Thus, it is called the sensitivity factor. More details about ai will be given later.
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The coordinatesof the point P* are computed as

x_ - _.,
m m

U i
O'x i

= DP*cosO_,

= _cosOx, (3.3.27)

The coordinates corresponding to P* in the original space are

x_ = _, + _x, cose_,, (i = 1,2,...,n)

Since P* is a point on the limit state surface, so

(3.3.28)

a_

g(x_, x_, ..., x,_) = 0 (3.3.29)

The main steps of the HL iteration method consist of:

1) Define the appropriate limit state function of Eq. (3.3.21);

2) Set the mean value point as an initial design point, i.e., x_ = tt_,, i = 1,2,...,n, and

compute the gradients Vg(X*) = rag_/2_:/ og(x') Og(X')}T of the limit state function at this
L _Xl ' Ox2 :''" O:_n

point;

3) Compute the initial t3 using the mean value method (Cornell safety index), i.e, fl = _A_
a_

and its direction cosine;

4) Compute a new design point X* from Eq. (3.3.28), and function value and gradients at

this new design point;

5) Compute the safety index/? using Eq. (3.3.25) and the direction cosine or sensitivity

factor from Eq.(3.3.26);

6) Repeat the steps (4) -(6) until the estimate of/3 converges;

7) Compute the coordinates of the design point or most probable failure point (MPP), X*.

In some cases, the failure surface may contain several points corresponding to stationary

values of the reliability index function. Therefore, it is necessary to use several starting points
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to find all stationary values_1, _2, ---, _m- This is called a multiple MPP problem. More details

about the multiple MPP problem will be given later. The Hasofer and Lind safety index is

(3.3.30)

In Eqs.(3.3.7) and (3.3.25), the difference between the mean value method and HL method

is that the HL method approximates the limit state function using the first-order Taylor

expansion at the design point X* or U* instead of the mean value point #. Also, the mean value

method doesn't require iterations, while the HL method needs several iterations to converge for

nonlinear problems. Therefore, the HL method usually provides better results than the mean

value method for the nonlinear problems. How well a linearized limit state function _(U) = 0

approximates a nonlinear function g(U) in terms of the failure probability P] depends on the

shape of g(U) = O. If it is concave towards the origin, Pf is underestimated by the hyperplane

approximation. Similarly, a convex function implies overestimation. However, there is no

guarantee that the HL algorithm converges in all situations. Furthermore, the Hasofer and

Lind method only considers normally distributed random variables, so it can not be used for

the nonnormal distributed random variables. Instead, another similar iteration method, called

the RF method, which will be introduced later, needs to be used.

Note: The HL method described here is a little different from the one given in Ref. [2]. In

Ref. [2], the coordinates of the design point X* are determined first, and the safety index

is calculated by using Eq. (3.3.25). The iteration process stops when the estimation of x_ is

stable.

Example 3.3a

In this example, the performance function, mean values, standard deviations, and

distributions of both random variables are the same as in Example 3.1. The HL method is

used to solve the safety index/3.
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(1) Iteration 1:

(a) Set the mean value point as an initial design point and required fl convergence tolerance

as ¢. = 0.001. Compute the limit state function value and gradients at the mean value point

g(X*) = g(g=l,/_=2) = _, + #_ - 18

---- 10.03 + 10.03 -- 18

= 1982.00

= 3 × 102 = 300

cOg

cOx2Iv 3#25 3 × 102 300

(b) Compute the initial fi using the mean value method and its direction cosine ai

I

g(x,)

(o_(_,._2)_ ): + (
Oxl _xl Ox2 xs]

1982.00

_/(3oo× 5.0):+ (300× 5.0):
= 0.9343

O_ 1 ----- --

( 0._1 _1 "J[- \ O,T 2

300 × 5.0

¢(300 × 5.0) 2 + (300 × 5.0):

= -0.7071
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Of 2 = --

Ozl '_zlj +

300 × 5.0

_/(300 × 5.0) 2 + (300 x 5.0) 2

= -0.7071

(c) Compute a new design point X* from Eq. (3.3.28)

m

X 1 = #_1 +/31axla,

= 10.0 + 0.9343 x 5.0 x (-0.7071)

- 6.6967

X 2 = _x2 -_ _laz2Ot2

= 10.0 + 0.9343 × 5.0 × (--0.7071)

= 6.6967

n

U 2

(2) Iteration 2:

x_ - #_ 6.6967 - 10.0
= = -0.6607

a_ 5.0

x_ - #_ 6.6967 - 10.0- = -0.6607
ax_ 5.0

(a) Compute the limit state function value and its gradients at X*

9(X*) = (x_) 3 + (x_) 3 - 18 = 6.69673 + 6.69673 - 18 = 582.63

09

Ozl Ix" = 3 × (x_) _ = 3 × 6.69672 = 134.5374

76



09

Ox2 [x. = 3 x (x_) 2 = 3 × 6.69672 = 134.5374

(b) Compute/3 using Eq. (3.3.25) and the direction cosine ai

/32
i=1 Ozl xt t

i% k Oxi x, ]

582.63 - 134.5374 × 5.0 × (-0.6607) - 134.5374 × 5.0 × (-0.6607)

= 1.5468

_/(134.5347 × 5.0) 2 + (134.5347 × 5.0) 2

dl_1 _---

134.5374 × 5.0

V/(134.5374 × 5.0) 2 + (134.5374 × 5.0) 2

= -0.7071

c_2 = c_l = -0.7071

(c) Compute a new design point X*

X 1 = #_ +/32a_ al

= 10.0 + 1.5468 × 5.0 × (-0.7071)

= 4.5313

* * 4.5313X 2 ---_ X 1 "_

U 1
Xl -- #xl

O'xl

4.5313 - 10.0
= = -1.0937

5.0
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(d) Check _ convergence

u 2 = u_ = -1.0937

= ]/_2- /_1[____ 1.5468- 0.9343 = 0.6556
131 0.9343

Since e > ¢r, continue the process.

(3) Iteration 3:

a) Compute the limit state function value and its gradients at X*

g(X') = (x_) 3 -b (x;) 3 - 18 = 4.5313 a + 4.5313 a - 18 -- 168.08

Og Ix. = 3 × (x_) 2 = 3 x 4.53132 = 61.598
OXl

Og

i)x2 Ix. = 3 x (x_) 2 = 3 x 4.53132 = 61.598

(b) Compute/3 using Eq. (3.3.25) and the direction cosine a_

g(x')- _ _--_-_ ._:
Oxi x_ s

i=1

Oxi i J

168.08 - 61.598 × 5.0 x (-1.0937) - 61.598 x 5.0 x (-1.0937

= 1.9327

_/(61.598 x 5.0) 2 + (61.598 × 5.0) 2

Ol 1 =

_/(0_Ix"_1)2+ ,_0__'__,_
61.598 × 5.0

_/(61.598 × 5.0) 2 + (61.598 × 5.0) 2

= -0.7071
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c_2 = ch = -0.7071

(c) Compute a new design point X*

m

X 1 -- _Xl 2c _30-xl Oil

= 10.0 + 1.9327 × 5.0 × (-0.7071)

= 3.1670

S

x 2 = x 1 = 3.1670

. x_ - #_, 3.1670 - 10.0
u 1 - - = -1.3666

cr_1 5.0

(d) Check 3 convergence

* * -1.3666

_ [_3 - B21 _ 1.9327 - 1.5468 = 0.2495
_2 1.5468

Since e > c_, continue the process.

(4) Iteration 4:

a) Compute the limit state function value and its gradients at X*

g(x') = (xi)3+ (x;)3_ 18= 3.16703+ 3.16703- 18= 45.529

O-_j-lx. = x (z_)2 = x =3 3 3.16702 30.0897

_lx. = × = × =3 (_)_ 3 3.16702 30.0897

(b) Compute _ using Eq. (3.3.25) and the direction cosine (_i
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2

a(X')- E __, *
i----1 cOxi "ai

_/i_ '°g_x'_ )_I, Ozi O'xi

45.529 - 30.0897 x 5.0 x (-1.3666) - 30.0897 x 5.0 x (-1.3666)

---- 2.1467

_/(30.0897 x 5.0); + (30.0897 x 5.0) 2

Of I

\ Ox2 IA x2 }

30.0897 × 5.0

V/(30.0897 × 5.0) 2 + (30.0897 × 5.0) 2

= -0.7071

a2 = al = -0.7071

(c) Compute a new design point X*

m

X 1 = _xl AF/_4Gxlal

= 10.0 + 2.1467 × 5.0 × (-0.7071)

= 2.4104

* " 2.4104X 2 "-- X 1 "--

2.4104 - 10.0

a_ 1 5.0

* * -1.5179_2 = Ul =

= -1.5179
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(d) Check/3 convergence

]/34 - _3] 2.1467 - 1.9327
e -- - = 0.1107

/33 1.9327

Since s > e_, continue the process.

(5) Iteration 5:

a) Compute the limit state function value and its gradients at X*

Og

-_zl[x. = 3 × (x_) 2

og
_-_--[x" = 3 × (x_) 2
ox2

g(X*) = (x;) 3 + (x_) 3- 18 = 2.41043 + 2.41043 - 18 = 10.01

= 3 x 2.41042 = 17.43

= 3 × 2.41042 = 17.43

(b) Compute/3 using Eq. (3.3.25) and the direction cosine al

_5 -'-
i=l Oxi xi

=1 \ Oxi ]

10.01 - 17.43 × 5.0 × (-1.5179) - 17.43 × 5.0 × (-1.5179)

= 2.2279

_/(17.43 × 5.0) 2 + (17.43 × 5.0) 2

OL1 ----

+ 2
17.43 × 5.0

X/(17.43 x 5.0) 2 + (17.43 × 5.0) 2

= -0.7071

a2 = al = -0.7071
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(c) Compute a new design point X*

X 1 -- #xl -_- 840-xl O/1

= 10.0 + 2.2279 × 5.0 × (-0.7071)

= 2.1233

* 2.1233X; -" X 1 "--

* Xl -- _zl
U 1 --

2.1233 - I0.0

a=l 5.0
= -1.5753

(d) Check 8 convergence

* * -1.5753?A2 = ?21 =

[85 -84[ 2.2279 - 2.1467
- - = 0.036

84 2.1467

Since e > e_, continue the process.

(6) Iteration 6:

(a) Compute the limit state function value and its gradients at X*

g(X*) = (x_) a + (x_) 3- 18 = 2.1233 _ + 2.12333 - 18 = 1.1451

_[x'= x(x_) 2=3 × =13.80443 2.14512

[x. = 3 x (x;) 2 = 3 x 2.14512 = 13.8044

(b) Compute 8 using Eq. (3.3.25) and the direction cosine a_
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_5

2

g(X')- E a_(x.)(_u:
i=l azi x,

_/&,a_(x-))2
2.,I o_=i 0"=_

Vi=l

1.1451 - 13.8044 x 5.0 x (-1.5753) - 13.8044 × 5.0 x (-1.5753

= 2.2398

V/(13.8044 × 5.0) 2 + (13.8044 x 5.0) 2

Ol 1 _---

v/(_ Ix._x,)2+ (__ .,_.__ J_2
13.8044 × 5.0

V/(13.8044 × 5.0) 2 + (13.8044 × 5.0) 2

= -0.7071

a2 = al = --0.7071

(c) Compute a new design point X*

X 1 = tt=_+t3sa_:lal

= 10.0 + 2.2398 × 5.0 × (-0.7071)

= 2.0810

* * 2.0810X2 --- Xl -_-

U 1

2.0810 - 10.0
= = -1.5838

5.0

u 2 = u 1 = -1.5838
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(d) Check8 convergence

[86 - 85[ 2.2398 - 2.2279
- - = 0.005

85 2.2279

Since _ > e_, continue the process.

(7) Iteration 7:

a) Compute the limit state function value and its gradients at X*

g(X') = (x_) 3 + (x_) 3 - 18 = 2.08103 + 2.08103 - 18 = 0.023

Og

Ox---_]x. = 3 x (x_) 2 = 3 × 2.08102 = 12.9917

Og [x. = 3 x (x_) 2 = 3 x 2.08102 = 12.9917
Ox2

(b) Compute/3 using Eq. (3.3.25) and the direction cosine a_

85 =

2

g(X')- E °_(x')a u*
i=1 0xi x, ,

_i _ c°_¢x')_x _2
=1 \ Oxi I

0.023 - 12.9917 x 5.0 x (-1.5838) - 12.9917 x 5.0 × (-1.5838)

= 2.2401

V/(12.9917 x 5.0) 2 + (12.9917 x 5.0) 2

O_1 =

12.9917 × 5.0

_/(12.9917 × 5.0) 2 + (12.9917 x 5.0) 2

= -0.7071

a2 = aa = -0.7071
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(c) Compute a new designpoint X*

X 1 = _I +/36axial

= 10.0 + 2.2401 × 5.0 × (-0.7071)

= 2.0801

* * 2.0801X 2 _ X 1

u_ - x_ -/_x_ _ 2.0801 - 10.0 = -1.5840
a_ 5.0

(d) Check/3 convergence

* * -1.5840?22 --" U 1

[/37 -/36[ 2.2401 - 2.2398
- - = 0.0001

/36 2.22398

Since _ < c_, stop the process.

The safety index/3 is 2.2401. Since the limit state function value at the MPP X* is close to

zero, this safety index can be considered as the shortest distance from the origin to the limit

state surface. Compared to the safety index/3 = 0.9343 obtained from the Mean Value method

given in Example 3.1, the safety index computed from the HL method is much more accurate

for this highly nonlinear problem.

Example 3.3b

In this example, the performance function, the mean value of xl, the standard deviations,

and the distributions of both random variables are the same as in Example 3.1. The only

difference between Examples 3.3a and 3.3b is that the mean value of x2 is 9.9 instead of 10.0.

The HL method is used to solve the safety index/3.
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(1) Iteration 1:

(a) Set the meanvaluepoint asan initial designpoint and required fl convergence tolerance

as ¢r = 0.001. Compute the limit state function value and gradients at the mean value point

g(x-)

= 10.0 3 + 9.9 3- 18

= 1952.299

Og 2
OxllV = 3/_.1 = 3 x 102 = 300

_2]_ = 3/_2=2= x =
3 9.92 294.03

(b) Compute the initial fl using the mean value method and its direction cosine ai

fll -

g(x*)

i og(_,., ,.,.=) a=l )2 + ( °g("=, ,.=:) o=:)=
I, Oxz _, 8x2

1952.299

_/(300 x 5.0) 2 + (294.03 x 5.0) 2

= 0.9295

Ot 1

it og(_,._,.=2) { og(_=_,.=2) 0"==)2_, 0=1 0. 1)2 -t- _ 0=2

300 × 5.0

_/(300 x 5.0) 2 + (294.03 x 5.0) 2

= -0.7142
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OL2

_/Iog(_':_1,_'_'2)o. _2 _g(_'_l,_'_2) (:r_: )2
I Oxl 1/ "3F ( Ox2 2

294.03 × 5.0

V/(300 × 5.0) 2 + (294.03 × 52) 2

= -0.7000

c) Compute a new design point X* from Eq. (3.3.28)

X 1 = t_l + l?la_lal

= 10.0 + 0.9295 × 5.0 × (-0.7142)

= 6.6808

X 2 = tt_:_ + _la_a2

= 9.9 + 0.9295 × 5.0 × (-0.7000)

= 6.6468

(2) Iteration 2:

s

. x_ -/_ 6.6808 - 10.0
tl I ----

o'_1 5.0

* x2 - #_2 6.6468 - 9.9
?22 -- .

ax 2 5.0

= -0.6638

= -0.6506

(a) Compute the limit state function value and its gradients at X*

g(X*) = (x_) 3 + (x_) 3 - 18 = 6.68083 + 6.64683 - 18 = 573.8398

0_lIX. = 3 × (zl) 2 = 3 x = 133.89826.68082
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0_2 Ix. = 3 x (x_) 2 = 3 x 6.64682 = 132.5409

(b) Compute/3 using Eq. (3.3.25) and the direction cosine a/

/32

209(X*) .g(X')- E a ,u/
i=1

Oxi

573.8398 - 133.8982 × 5.0 × (-0.6638) - 132.5409 × 5.0 × (-0.6506)

= 1.5387

_/(133.8982 × 5.0) 2 + (132.5409 × 5.0) 2

O_1 --

Ox2 "" x2 ]

133.8982 × 5.0

V/(133.8982 × 5.0) 2 + (132.5409 x 5.0) 2

= -0.7107

Or2 ---

, 2

132.5409 × 5.0

V/(133.8982 × 5.0) 2 + (132.5409 × 5.0) 2

= -0.7035

(c) Compute a new design point X*

Xl = #x_ +132a_,a,

= 10.0 + 1.5387 × 5.0 × (-0.7107)

= 4.5323
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X¢

X 2 : #_2 + _2ax2a2

= 9.9 + 1.5387 x 5.0 x (-0.7035)

= 4.4877

a_

721 --

, X2 -- ]_x2

O'X2

(d) Check/3 convergence

4.5323 - 10.0
= -1.0935

5.0

4.4877 - 9.9

5.0
= -1.0825

[f12 -/_11 1.5387 - 0.9295

fll 0.9295

Since c > _, continue the process.

= 0.6554

(21) Iteration 21:

(a) Compute the limit state function value and its gradients at X *

g(X') = (x_) _ + (x_) 3 - 18 = 8.52533 + 4.25973 - 18 = 678.9088

o_Ix. : x (x_)2 : 3 x --218.0401
3 8.52532

Og Ix. : 3 × (x_) 2 : 3 × 4.25972 : 54.4352
Ox2

(b) Compute/_ using Eq. (3.3.25) and the direction cosine a_
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_21 "--

2

g(X')- E _(x')c' u*.
i=1 Oxi xi t

678.9088 - 218.0401 X 5.0 x (-0.2949) - 54.4352 x 5.0 x (-1.1281)

= 1.1636

_/(218.0401 × 5.0) 2 + (54.4352 × 5.0) 2

O_1

_/(_ Ix'_,) 2+ (_o_2_v'__2,"
218.0401 × 5.0

_/(218.0401 x 5.0) 2 + (54.4352 x 5.0) 2

= -0.9702

O_2 ---

v/(_ Ix'_,) 2+ ,__o_2_'__2J_
54.4352 x 5.0

_/(218.0401 × 5.0) 2 + (54.4352 x 5.0) 2

= -0.2422

(c) Compute a new design point X*

X 1 ---- /2zl -.[- _210"xl O_1

= 10.0 + 1.1636 x 5.0 × (-0.9702)

= 4.3553

S

X 2 = _ + _21a._a2

= 9.9 + 1.1636 × 5.0 × (-0.2422)

= 8.4908
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, x 1 -/_=_ 4.3553 - 10.0
u 1 - - = -1.1289

a=1 5.0

u2 = x 2 - #=_ 8.4908 - 9.9* - = -0.2818
a=2 5.0

(d) Check/3 convergence

_ }/321 -/32ol _ 11.1636- 1.16601 = 0,002
/320 1.1660

Since _ > _r, continue the process.

(22) Iteration 22:

(a) Compute the limit state function value and its gradients at X*

g(X') = (x_) 3 + (x_) 3 - 18 = 4.35533 + 8.49083 - 18 = 676.7346

_g_}x.= x(z_) 2= x =3 3 4.35532 56.9049

0g
0x2 Ix, = 3 x (x_) 2 = 3 x 8.49082 = 216.2786

(b) Compute/3 using Eq. (3.3.25) and the direction cosine a_

_22 =

2

g(X*)- E o._zt_ _.

_©l(ag(x*),., _2

676.7346 - 56.9049 x 5.0 x (--1.1289) - 216.2786 × 5.0 x (-0.2818)

= 1.1650

_/(56.9049 x 5.0) 2 + (216.2786 x 5.0) 2

Ot 1

+
56.9049 x 5.0

I(56.9049 x 5.0) 2 + (216.2786 x 5.0) 2

= -0.2544
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a-_q- [X • drx_
ax2

216.2786 x 5.0

x/(56.9049 x 5.0) 2 ÷ (216.2786 × 5.0) 2

---- -0.9671

(c) Compute a new design point X*

X 1 -- _txl + _21axl(:l_l

= 10.0 + 1.1650 x 5.0 x (-0.2544)

= 8.5178

= #_2 + _2,a_2a2

= 9.9+ 1.1650 × 5.0 × (-0.9671)

= 4.2666

x_ - #_1 8.5178 -- 10.0
u_ = -- = -0.2964

a_, 5.0

. x_ - #_ 4.2666 - 9.9
u S - -- = -1.1267

a_ 5.0

(d) Check _ convergence

Since _ > er, continue the process.

1.1650 - 1.1636

1.1636
= 0.0012
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(23) Iteration 23:

(a) Compute the limit state function value and its gradientsat X*

g(X*) -- (x_) 3 + (x;) 3 - 18 = 8.51783 + 4.26663 - 18 = 677.655

_-_-Ix. = x = x =3 (x;)2 3 8.51782 217.6582

Og
_9x2 Ix" = 3 x (x_) 2 = 3 x 4.26662 = 54.61056

(b) Compute/_ using Eq. (3.3.25) and the direction cosine a,

2

g(X*)- E a____:la u*
i----1 Oxi xi z

f _=l(°g(x') ,., _2

\ Oxi vxi /

677.655 - 217.6582 X 5.0 × (-0.2964) - 54.61056 X 5.0 X (-1.1267)

= 1.1657

X/(217.6582 X 5.0) 2 + (54.61056 X 5.0) _

.,:,. 2 (_1x.o. 2)2,,/(_.,Ix _,) +
217.6582 x 5.0

_/(217.6582 x 5.0) 2 + (54.61056 x 5.0) 2

= -0.9699

Ol 2 --

•o- 2 (_1x.o.2)2J(_,,Ix ,,) +
54.61056 x 5.0

_/(217.6582 x 5.0) 2 + (54.61056 x 5.0) 2

- -0.2434

(c) Compute a new design point X*
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X 1 = #xl -[-/_21(Txl _1

= 10.0 + 1.1657 x 5.0 x (-0.9699)

= 4.3468

X 2 = _ + _21a_2a2

= 9.9 + 1.1657 x 5.0 x (-0.2434)

= 8.4816

. x_ - _xl 4.3468 - 10.0 = -1.1306
_1 m

a_l 5.0

x_ - #_2 8.4816 - 9.9
- = -0.2837

a_ 2 5.0
U 2 =

(d) Check/_ convergence

_ [/323 -/_2] _ 1.1657 - 1.1650 = 0.0006
fl22 1.1650

Since e < e,, stop the process.

The safety index converges after 23 iterations; however, the MPP is not on the limit state

surface (g(X*) = 677.655). Also, from iterations 21, 22 and 23, the design point X* oscillates.

If a convergence check for determining whether the MPP is on the surface or not is added, the

process will continue. However, no final MPP on the surface can be found after hundreds of

iterations due to the oscillation. From this example, it is clear that the HL method may not

converge in some cases due to its linear approximation. A more efficient method can be used to

deal with this problem, and the correct safety index for this example is given in Example 3.8.
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 g(u)=0
/

12£

(a) Two-dimension

U_

maximum PDF

g(V)=O
1

(b) Three-dimension

Fig. 3.7 Most Probable failure Point (MPP)

3.3.2.3 Most Probable failure Point (MPP)

As mentioned in Section 3.3.2, the point U*(u_, u_,..., u_) corresponding to the shortest

distance from the origin to the failure surface g(U) = 0 is defined as the design point. Because

of rotational symmetry and the Hasofer-Lind transformation, the design point in U-space

represents the point of greatest probability density or maximum likelihood (Fig. 3.7). It

makes the most significant contribution to the nominal failure probability P] = _(-_), so this

design point is also called the most probable failure point (MPP).

The MPP is important in structural analyses. For the problems having a single stationary

point, as shown in Fig. 3.7, the MPP corresponds to the greatest probability density in the

failure region and has the maximum failure probability. That is, it implies the most possible

failure design in the structures due to the uncertainties. Searching the MPP on the limit state

surface is a key step in the HL method. The improvement of the HL method compared with
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the MVFOSM also comes from changing the expanding point from the mean value point to the

MPP.

3.3.2.4 Sensitivity Factors

As mentioned in section 3.3.2.2, the direction cosine of the unit outward normal vector

of the limit state function ai given in Eq. (3.3.26) is defined as the sensitivity factor. The

sensitivity calculation of the failure probability or the safety index to small changes in random

variables usually gives useful information for studying the statistical variation of the response.

The sensitivity factor shows the relative importance of each random variable to the structural

failure probability.

In Eq. (3.3.26), the physical meaning of ai implies the relative contribution of each random

variable to the failure probability (Fig. 3.8). For example, the larger the ai value is, the higher

the contribution towards the failure probability due to

2= 1 (3.3.31)

In fact, ai is the sensitivity of the safety index fl at MPP. From the definition of fl as the

distance from the origin to the limit state surface g(U) = 0, it follows that

OUi OUi fl
-- O_i

i = 1, 2, ..., n (3.3.32)

The sensitivity factors for the failure probability Pf are

where ¢(.) represents the standard normal density function.

(3.3.33)

In Eq.(3.3.26), og(x) represents the sensitivity of the performance function g(X) whichOxi

measures the change in the performance function to the change in the physical random variables.

However, the sensitivity of the safety index/_ represents the change in the safety index due to
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Fig. 3.8 Sensitivity Factors
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the change in random variables and the uncertainty, that is, it depends on the sensitivity of

the performance function ag(x) and the standard deviation of random variables cri (from Eq.
Oxl

3.3.26).

In summary, what you are getting by computing the ai is the sensitivity of the safety index

with respect to ui, which has two major functions. First, these sensitivity factors show the

relative contributions of the random variables to the safety index or the failure probability.

Second, the sign of the sensitivity factor gives the relation between the performance function

and the physical variables. A positive ai means that the performance function g(U) decreases

as the random variables increase, and a negative factor means g(U) increases as the random

variables increase. If you are looking for the sensitivity of the failure probability, it will have

the same direction, but you need to multiply ai with the probability density function value

(Eq. 3.3.33). For example, the limit state function is

g(x)=$-s(x) (3.3.34)

where ,q is the allowable stress and S(X) is the structural stress. If ai is positive, it means

2@_is negative and 0s(x) is positive. In very simplified terms, if the random variable increases,
axl ox_

S(X) increases and the failure probability increases.

3.3.2.5 Transformation of Nonnormal Variables

In the Hasofer-Lind method, the random variables X are assumed as normally distributed.

Even when the limit state function g(X) is linear, the structural probability calculation given

in Eq. (3.2.9) is inappropriate in the nonnormal cases. However, many structural reliability

problems involve nonnormal random variables. It is necessary to find a way to solve these

nonnormal problems. There are many methods available for conducting the transformation,

such as Rosenblatt [5], Hohenbichler and Rackwitz [6], etc. A simple and approximate

transformation called equivalent normal distribution or the normal tail approximation is

described below. The main advantages of this transformation are:
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(1). It doesnot require the multidimensional integration;

(2). Transformation of the nonnormal variables into equivalent normal variables has been

accomplished prior to the solution of Eqs.(3.3.21) - (3.3.29);

(3). Eq. (3.2.9) for calculation of the structural probability is retained;

(4). It often yields excellent agreement with the exact solution of the multi-dimensional

integral of probability formula.

transformation is given as

When the variables are mutually independent, the

_ = ,_-l[&,(z,)] (3.3.35)

where ¢-1[.] is the reversal of ¢[.]. F_i(x,) is non-normal and f_i(xi) is normal distribution.

One way to get the equivalent normal distribution is to use the Taylor series expansion of

the transformation at the MPP X*, neglecting nonlinear terms [7],

where

4, = ¢ [F.,(x,)] + (¢-l[&(x,)])l..(x,- _;) (3.3.36)

f_,(x,) (3.3.37)¢-_[&,(x,)] = ¢(_-1[F_,(_,)])

Upon substituting (3.3.37) into (3.3.36) and rearranging,

_, - [=; - ¢-I[F.,(=;)]¢(¢-I[F.,(x.)])/I.,(z;)]
u,= ¢(¢-I[F.,(x._I]I/L,(x_)* (3.3.38a)

which can be written as

xi - #<
ui - (3.3.38b)

where F_, (xi) is the marginal cumulative distribution function, f,, (xi) is the probability density

function, and #=_ and o'=_ are the equivalent means and standard deviations of the approximate

normal distributions. They are given as

¢(¢-l[F='(x'_)]) (3.3.39a)

* --1 *
_< = _:_-,_ [F_,(_)]o_: (3.3.39b)
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fxi ( x i)

O

f (x ..*)= f ,(x )
xi 1

° !

X.1 _Xi _X i

Non-normal distribution

Equivalent normal
distribution

F (x* F ,(x ) *
xi i )= xi i

Fig. 3.9 Normal Tail Approximation

Another way to get the equivalent normal distribution is to match the cumulative

distribution functions and probability density function of the original non-normal and the

approximate or equivalent normal random variable distributions at the MPP [5]. Assuming

that x_ is an equivalent normally distributed random variable, the cumulative distribution

! *

function values of xi and xi at x i are equal, i.e.,

X _ = 7) (3.3.40)

or

F=,(x_) = (I)( x* - #=:) (3.3.41)
cr=_

100



SO

The probability density function value of zi and x_ at x_ are equal, i.e.,

(3.3.42)

X _ = (3.3.43)

or

f_,(x_) = l_l__¢(x* - #_) (3.3.44)

From Eqs. (3.3.42) and (3.3.44), the equivalent mean/_ and standard deviation a_ of the

approximate normal distributions are derived as Eqs.(3.3.39a) and (3.3.39b). This normal tail

approximation is shown in Fig. 3.9.

Using Equations (3.3.39a) and (3.3.39b), the transformation of the ra_ndom variables from

the X-space to the U-space can be easily performed, and the performance function G(U) in

U-space is approximately obtained.

Example 3.4

x is a random variable having a lognormal distribution. Its mean value and standard

deviation are #, = 120 and a_ = 12, respectively. Calculate the mean value and standard

deviation of the equivalent normal distribution variable x' at x* = 80.0402.

(1) Compute the mean value, /_, and standard deviation, qv of a normally distributed

variable y (y = lnx) using Eqs. (1.53) and (1.54)

O'y --"
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1 2

1

= lnl20- _ x 0.099752

= 4.7825

(2) Compute the density function value at x"

Ix(x') 1 1 Inz* - _)2]
- v_7_._p[-_( _

1 exp[- l J/n80.0402 -- 4.7825 )2]
= v/_ × 80.0402 × 0.09975 2( _.'._975

= 1.6114 × 10 -s

(3) Compute the cumulative distribution function value at x*

From the density function above, it is obvious that the cumulative distribution function can

be given as

(4) Compute @-l[F_(x*)]

Fx(_') = ¢(l=x" - _)
gry

¢-l[Fx(_')]
l_x* -- _y

_y

ln80.0402 - 4.7825

0.09975

= -4.0098

(5) Compute ¢(¢-l[Fx(x*)])

1 1 lnx* - #_

¢(¢-'[F_(_')])- w___=_xP[-_( _ )5]
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1 1 ln80.0402 - 4.7825)2]
v_exP[-2 ( 0.09975

1.2865 × 10 -4

(6) Compute the mean value and standard deviation of the equivalent normal distribution,

#_, and ax, using Eqs. (3.3.39a) and (3.3.39b)

O'_gt -'-

Ix(x*)
1.2865 x 10 -4

1.6114 × 10 -_

= 7.9841

= z. -

= 80.0402 + 4.0098 x 7.9841

= 112.0553

Using #x, and _r,,, the standard normal variable of x can be computed from Eq. (3.3.38b).

Example 3.5

x is a random variable having a type-I extreme value distribution. Its mean value and

standard deviation are/_x = 4 and ax = I, respectively. Calculate the mean value and standard

deviation of the equivalent normal distribution variable x' at x* = #x = 4.

(1) Compute the scale and location parameters, _ and to, of the type-I extreme value

distribution for the variable x using Eq. (1.65). In the following expression, pp, OrB, _, and to

are equivalent to #x, ax,/3, and 1/a given in Eq. (1.65), respectively.

_0
1.2825

103



1
1.2825

= 0.7797

= #x - 0.5772to

= 4 - 0.5772 x 0.7797

= 3.5499

(2) Compute the density function value at x*

fx(x') 1 x*-5= Fo_Xp{-(--7/-o)- _xp[-( )]}

exP ¢-_ 4"t_, - 3.5499 - 3.54990.7797 ) - exp[-(4 0.7797 )]}1.2825 ×

= 0.4107

(3) Compute the cumulative distribution function value at x*

= _p{-e_p( _*- _)}
to

= exp{-exp( 4-3.54990.7797) }

= 0.5704

(4) Compute O-l[F_(x')]

¢-l[F_(x*)] = ¢-_[0.5704]

= 0.177

(5) Compute ¢(¢-_[F_(x*)])
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¢(_-l[F_(x*)]) - ¢(0.177)

= 0.3927

(6) Compute the mean value and standard deviation of the equivalent normal distribution,

g_, and cry, using Eqs. (3.3.39a) and (3.3.395)

_ =
¢(¢-1[F_,(_;)])

Ix,(i)
0.3927

0.4107

= 0.9561

* -1 * O" i= x, - ¢ [r_,(xi)] _,

= 4 - ¢-110.5704] × 0.9561

= 3.8305

Example 3.6

x is a random variable having a Weibull distribution. Its mean value and standard deviation

are #_ = 50 and a, = 5, respectively. Calculate the mean value and standard deviation of the

equivalent normal distribution variable x' at x* = #, = 50.

(1) Compute the parameters, a and 3, of the Weibull distribution for the variable x using

Eqs. (1.58) and (1.59).

_0 . r(_ + 1) 110.5- tr=(_+ 1)

= 12.1534

105



F(_+ 1)

5O

- r(_ + 1)
= 52.1519

Note: If Eq. (1.60) is used, the approximate parameters can be solved as below:

a = C_ -l"°s = (5-_) -l"°s = 12.0226

[tx 50

Z- r(-}+l) - r( 1 + 1) = 52.1728

The approximate parameters are very close to the exact values, so this method can be used

for practical engineering problems.

(2) Compute the density function value at x*

fx(x')
OLX a-1

12.1534 × 5012"1534-1

52.151912.1534

= 7.9998 .2

50 12 1534

exp[-(52:_19) • ]

(3) Compute the cumulative distribution function value at x*

F.(x*)
.T.

= 1- exv[-(_)°]
50 1215_

= 1-exp[-(52.-_519 ) " ]

= 0.4508

(4) Compute ¢-I[F.(x*)]
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(5) Compute ¢(¢-l[F_(x*)])

¢-l[F_(x-)] = ¢-110.45081

= -0.1237

¢(_-l[F_(x*)]) = ¢(-0.1237)

= 0.3959

(6) Compute the mean value and standard deviation of the equivalent normal distribution,

#_, and a_, using Eqs. (3.3.39a) and (3.3.395)

¢(_-1[F_,(x;)])
A,(z;)

0.3959

7.9998 -2

= 4.9489

= _; - ¢-'[F_,(x;)]o_

= 50 - ¢-110.4508] × 4.9489

= 50.6123

3.3.2.6 RF/HL-RF algorithm

The RF algorithm is similar to the Hasofer-Lind iteration method shown in section 3.3.2.2,

except that the steps 2 and 4 are necessary to implement the calculation of the mean and

standard deviation of the equivalent normal variables based on Eqs. (3.3.39a) and (3.3.395).

107



Fig. 3.10 Beam with a Concentrated Load

The RF method canbe also calledHL-RF method sincethe iteration algorithm wasoriginally

proposedby Hasoferand Lind and later extendedby Rackwitzand Fiesslerto include random

variable distribution information. The following example is given to explain the HL-RF

algorithm.

Example 3.7

Considerthe planeframe structure shownin Fig. 3.10.Evaluatethe safetyindex/_ and the

coordinatesx7 of MPP. The failure principle of the displacement is

5PL 3 L

d_a_ - 48EI >- _

where dm_ is an allowable maximum displacement, E is Young's modulus, and I is the bending

inertial moment of the cross section. The mean values, #p,/_L, #E, PI, of the load P, the beam
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length L, the Young's modulus E, and the inertial moment I are 4 kN, 5 m, 2.0 x lOTkN/m 2,

and 10-4m 4, respectively. The corresponding standard deviations, ap, O'L, fiE, al, are 1 kN,

0 m, 0.5 x 107kN/m 2, and 0.2 x 10-*m*. Because aL -- 0, L is a deterministic parameter

(L=5 m). There are three random variables in this example. P is the type-I extreme value

distribution, and E and I are normal distribution. The limit state function is given as

EI- 78.12P = 0

(1) Compute the scale and location parameters of the type-I extreme value distribution using

Eq. (1.65) for the variable P. In the following expression, #p, o'p, and _ are equivalent to #,,

a_ and _ given in Eq. (1.65), respectively.

Substituting #p = 4kN and ap =

parameters are obtained as

(2) Iteration 1:

Vp = _ + 0.5772/a

Ctp = 1.2825/a

lkN into the above formulas, the scale and location

= 3.5499, a = 1.2825

(a) Compute the mean and standard deviation of the equivalent normal distribution for P:

First, assuming the design point, X* = {E*,I*,P*} T, as the mean value point, the

coordinates of the initial design point are

E*=#E=2X107 ,

The density function value at P* is

1"--#i--10 -4 ' P* = #p = 4

fp(P') acxp{-(P" - - cxp[-(P* -
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= 1.2825.exp{-(4 - 3.5499) x 1.2825 - exp[-(4 - 3.5499) x 1.2825]}

= 0.4107

The cumulative distribution function value at P* is

Fp(P') = _xp{-exp[-(P*- _)_]}

= exp{-exp[-(4- 3.5499) x 1.2825]}

= 0.5704

Therefore the standard deviation and mean value of the equivalent normal variable at P*

from Eqs. (3.3.44a) and (3.3.445) are

O'p_
¢(¢-l[Fp(P')])

fp(P')

¢(_-1[0.5703])

0.4107
0.3927

0.4107

= 0.9561

where ¢-110.5704] = 0.177 and ¢(0.177)= 0.3927.

,p, = p* _ ¢-l[Fp(p.)]_p,

= 4-_-1[0.5704] ×0.9561

= 3.8304

(b) Compute the function value and gradients of the limit state function at the mean value

point:
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g(E*,I*,P*) = EI- 78.12P

= 2×107 ×10 -4-78.12X4

= 1687.52

Og(X*) _ 10_ 4
OE

Og(X*) _ 2 x 107
OI

Og(X*)_ 78.12
0P

(c) Compute the initial/3 using the mean value method and its direction cosine ai

a_

g(E',I',P*)

V/,'Og(E*,I*,P*)_ _2 Og(E*,I*,P*)(:rI)2__fOg(E*,I*,P*)- _2( OE _E) + ( OZ _, aP c,pj

1687.52

%/(10 -4 x 0.5 x 107) 2 + (2 x 107 x 0.2 x 10-4) 2 + (-78.12 x 0.9561) 2

= 2.6383

OZE --
(ag(E*,I*,P*) _ ",2 Og(E*,I*,P*)"/(°_(E"t"P')aE)2 + _ o_ "_: + ( _e) 2V \ OE OP

10 -4 x 0.5 × 10 7

V/(IO -4 x 0.5 x 107) 2 + (2 X 107 x 0.2 X 10-4) 2 + (-78.12 x 0.9561) 2

-- -0.7756

0_I --

V/( ag(E*'I*'P*)-'aE UE }_2 ___ ( Og(E*,I*,P*)(TI)23I + _,:Og(E"I*'P*)-Op up)\2
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2 x 107x 0.2 x 10-4

_/(10 -4 x 0.5 x 107) 2 q- (2 × 107 x 0.2 x 10-4) 2 -l-(-78.12 × 0.9561)2

= -0.6205

O_p =

_//O9(E*,I*,P*)_ _2 [Og(E*,I*,P*)_ _2{ ag(E*,I*,P*) 6rl)2OE OE} + _ OI + _, OP .up}

-78.12 x 0.9561

_/(10 -4 x 0.5 x 107) 2 + (2 x 107 x 0.2 x 10-4) 2 + (-78.12 x 0.9561) _

= 0.1159

(d) Compute the coordinates of the new design point from Eq.(3.3.28):

_ = #E + _IO'EaE

= 2 X 10 7 -4-2.6383 X 0.5 X 107 X (--0.7756)

= 9768710.0966

= #: +/31a:a:

= 10-4 + 2.6383 x 0.2 x 10-4 X (--0.6205)

= 0.6726 X 10-4

* = ]_p, -_ _lO'p,O_p

= 3.8304 + 2.6383 x 0.9561 x 0.1159

= 4.1227

UE

E* - _E 9768710.0966 -- 2 x 107

CrE 0.5 x 10 7
= -2.0463
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I* - _ 0.6726 × 10 -4 - 10 -4
u x - - -1.6370

O'I 0.2 X 10 -4

P* - #v, 4.1227 - 3.8304
up -- = 0.3057

o'p, 0.9561

(3) Iteration 2:

(a) Compute the mean and standard deviation of the equivalent normal distribution at P*

The density function value at P" is

fp(P*) = aexp{-(P* - 5)a - exp[-(P" - 5)a]}

= 1.2825-exp{-(4.1227 - 3.5499) × 1.2825 - exp[- (4.1227 - 3.5499) x 1.2825]}

= 0.3808

The cumulative distribution function value at P* is

Fp(P*) = exp{-exp[-(P*-5)a]}

= exp{-exp[-(4.1227- 3.5499) x 1.2825]}

= 0.6189

The standard deviation and mea_n value of the equivalent normal variable at P* are

fp(P*)
[0.6189])

0.3808
0.3811

0.3808

= 1.0007

where (I)-1[0.6189] = 0.3028 and ¢(0.3028) = 0.3811.
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_P' = p* _ (I)-_[Fp(P*)]o-p,

-- 4.1227- _-1[0.6189] x 1.0007

= 3.8197

(b) Compute the function value and gradients of the limit state function at X*(E*, I*, P*)

g(E*,I*,P') = EI-78.12P

= 9768710.0966 x 0.6726 x 10 -4 - 78.12 x 4.1227

= 334.9737

Og(X*) _ 6.726 x 10 -5
OE

Og(X*) = 9768710.0966
OI

og(x'_)_ 78.12
OP

(c) Compute/3 using Eq. (3.3.25) and the direction cosine ai

32 ---

g(X*) - °:-_-3.a-u. _ * ogcx.) .OE 1:; E -- Ol GI_I -- OP Gp_p

(%__: _)_ (o:____)_ + (o___.__/ ae, "4- OI OP vr/

334.9737 + 672.6 x 0.5 x 2.0463 + 976.87 x 0.2 x 1.6370 + 78.12 x 1.0007 x 0.3057

¢(6.726 x 10 -s x 0.5 x 107) 2 + (9768710.0966 × 0.2 × 10-4): + (-78.12 x 1.0007) 2

= 3.4449

O_E
OE [/zGE

¢( Og(E*'I"P*)oE OE }-',2.4_ I,/Og(E",I*,P*)oI ui )-_2.__ ( O9(E*,I°, P*)OPGp)2

6.726 x 10 -5 x 0.5 x 10 v

_/(6.726 x 10 -5 × 0.5 x lOT): + (9768710.0966 × 0.2 × 10-4) 2 + (-78.12 x 1.0007) 2

- -0.8477
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9768710.0966× 0.2 × 10-4

¢(6.726 x 10-5 × 0.5 x lOt)2+ (9768710.0966 x 0.2 × 10-4) 2 + (--78.12× 1.0007)2

-- --0.4925

_p
¢Og(E*,I*,P* )_ ,,

-78,12 × 1.0007

¢(6.726 x 10 -5 x 0.5 x 107) 2 + (9768710.0966 × 0.2 x 10-4) 2 -}- (-78.12 × 1.0007) 2

= 0.1971

(d) Compute the coordinates of the new design point from Eq.(3.3.28):

_ --" #E -I- ]_20"E_E

= 2 X 107+ 3.4449 × 0.5 × 107 × (--0.8477)

= 5398459.5316

n = _1 + _2ai_1

= 10-4 + 3.4449 x 0.2 x I0-4 × (-0.4925)

-- 0.6607 x lO-4

m "- #p, "_-[_20"p,_p

= 3.8197 + 3.4449 × 1.0007 × 0.1971

= 4.4990
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5398459.5316 - 2 x 107E* - #E
u}--

O'E 0.5 x 107

I* - #I 1.3393 x 10-4 - lO-4
ui - -- - = -1.6966

al 0.2 × 10-4

P* - #p, 4.4990 - 3.8197
Up = 0.6788

ap, 1.0007

= -2.9203

(e) Check 8 convergence

[82 - 8,[ 3.4449 - 2.6383
- - = 0.3057

/3, 2.6383

Since _ > er(0.001), continue the process.

(4) Iteration 3:

(a) Compute the mean and standard deviation of the equivalent normal distribution at P*

The density function value at P* is

fp(P') = aexp{-(P* - 6)a - exp[-(P* - 6)a]}

= 1.2825. exp{-(4.4990 - 3.5499) x 1.2825 - exp[-(4.4990 - 3.5499) x 1.2825]}

-- 0.2824

The cumulative distribution function value at P* is

Fp(P') = exp{-exp[-(P'-

= exp{-exp[-(4.4990- 3.5499) × 1.2825]}

= 0.7438

The standard deviation and mean value of the equivalent normal variable at P* are
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Crp,
¢(¢-,[Fp(P*)])

fp(P,)
¢(¢-_[0.743s])

0.2824
0.3219

0.2824

= 1.13998

where ¢-1[0.7438] = 0.65495 and ¢(0.65495) = 0.3219.

#P' = p, _ ¢-l[F_(p,)]_p,

= 4.4990 - ¢-110.7438] x 1.13998

= 3.7524

(b) Compute the function value and gradients of the limit state function at X*(E*, I", P")

g(s*,r,P-) = El- 78.12P

= 5398459.5316 x 1.3393 × 10-4 - 78.12 × 4.4990

= 5.2055

Og(X') = 6.6069 x 10 -s
OE

Og(X*) _ 5398459.5316
01

og(x.)
- 78.12

OP

(c) Compute fl using Eq. (3.3.25) and the direction cosine ai
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_3 "--
g( X* ) - _ " °g(x') a-u" °g(x') a-u*OE °'EUE-- OI i I-- OP l-" p

Og X* 2 ,, Og(X*) _ _,2og(x') a i og(x') ,T -_2
', OI v,]

5.2055 + 660.69 x 0.5 x 2.9203 + 539.85 x 0.2 x 1.6966 + 78.12 x 1.13998 x 0.6788

_/(6.6069 x 10 -5 x 0.5 x 107) 2 + (5398459.5316 x 0.2 x 10-4) 2 + (-78.12 x 1.13998) 2

= 3.3766

_I09(E',I*,P*)_ _2 [Og(E*,I*,P*) O. _2 [Og(E*,I*,P*) a _2
_, OE OE) + I OI I) nt- I, OP P)

6.6069 x 10 -5 x 0.5 x 107

_/(6.6069 x 10 -5 x 0.5 X 107) 2 -_ (5398459.5316 x 0.2 X 10-4) 2 "7!-(--78.I2 X 1.13998) 2

= --0.9208

C_I ----
O9(E*,I*,P*)

V !,/[Og(E*'I*'P*)O'DE E}_2 ..[_ ( Og(E*,I*,P*)o.I)20I -{- ( oe O'P) 2

5398459.5316 x 0.2 x 10 -4

_/(6.6069 x 10-5 × 0.5 x 107)2+ (5398459.5316 × 0.2 x 10-4) 2 + (--78.12x 1.13998)2

------0.3009

OIp ----

V/( Og(E°'I*'P*)OE OE)- \2 + ( O9(E',I',P') o.I)20I -}- (Og(E*,I',P')_Op op}"2

-78.12 x 1.13998

_/(6.6069 x I0-5 x 0.5 x 107)2+ (5398459.5316 x 0.2 x 10-4)2 + (-78.12 x 1.13998)2

- 0.2482

(d) Compute the coordinates of the new design point from Eq.(3.3.28):

=- ]_E + _3aEC_E

= 2 X 107+ 3.3766 X 0.5 × 107 X (--0.9208)

= 4454699.4278
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= _I +/3zaz_z

= 10 -4 + 3.3766 × 0.2 x 10 -4 X (--0.3009)

= 0.7968 X 10 -4

_ "-- #p -[- /330"p_p

= 3.7524 + 3.3766 × 1.13998 × 0.2482

= 4.7079

E" - #E 4454699.4278 - 2 × 107
u E = - = -3.1091

aE 0.5 × l0 T

I* - #I 0.7968 × 10 -4 - 10 -4
,k

u z = -- - = -1.0162
al 0.2 × 10-4

P* - #p_ 4.7079 - 3.7524
Up = = = 0.8381

crp, 1.13998

(e) Check/3 convergence

_ [f13 -/32[ _ [3.3766 - 3.4449[ = 0.0198
82 3.4449

Since e > ¢r(0.001), continue the process.

(5) Iteration 4:

(a) Compute the mean and standard deviation of the equivalent normal distribution at P*

The density function value at P* is

= aexp{-(P* - 6)a - exp[-(P* - 6)a]}

= 1.2825. exp{-(4.7079 - 3.5499) × 1.2825 - exp[-(4.7079 - 3.5499) × 1.2825]}

= 0.2316
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The cumulative distribution function vaJueat P* is

Fp(P*) = exp{-exp[-(P*- 5)a]}

= exp{-exp[-(4.7079-3.5499) × 1.2825]}

= 0.7973

The standard deviation and mean value of the equivalent normal variable at P" are

(Tp,
¢(¢-I[Fp(P')])

fp(P')

¢(¢-110.7973])

0.2368
0.2822

0.2368

= 1.2184

where ¢-1[0.7973] - 0.8321 and ¢(0.8321) = 0.2822.

#P' = P* - ¢-a[Fp(P')]ap,

= 4.7079- ¢-1[0.7973] × 1.2184

= 3.6939

(b) Compute the function value and gradients of the limit state function at X*(E* ,I*,P*)

g(E*,I*,P') = El- 78.12P

= 4454699.4278 × 0.7968 × 10-4 - 78.12 × 4.7079

= -12.8426
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cOg(X') _ 7.9676 x i0-s
cOE

cOg(X*) _ 4454699.4278
cOI

cOg(X" ) _ -78.12
cOP

(c) Compute/9 using Eq. (3.3.25) and the direction cosine c_¢

g(X*) - o_(x') .. o_(x') o..u. o_(z')_ ...OE O'EUE - OI I I- OP opup

+
-12.8426 + 796.76 × 0.5 × 3.1091 + 445.47 × 0.2 × 1.0162 + 78.12 × 1.2184 × 0.8381

V/(7.9676 × 10-5 x 0.5 × I07)_ + (4454699.4278 × 0.2 × 10-4)2 + (-78.12 × 1.2184)2

= 3.3292

O_E --

_/(Og(E',I*,P*)_OE "E)'_2 .__ kzOg(E"I"P*)--OI. uI ]\2nU (Og(E*,I',P*) o.p)28p

7.9676 × 10 -s × 0.5 × l0 T

V/(7.9676 × 10 -5 × 0.5 × 107) 2 + (4454699.4278 × 0.2 × 10-4) 2 + (-78.12 × 1.2184):

= -0.9504

O_I --

: Og(E*,I*,P*) _ _2 [ O._(E*,I*,P*) (:rp)2,/(Og(E',I*,P*) (:rE)2 __ _ OI °I) _- _ cVPY_ OE

4454699.4278 × 0.2 × 10 -4

V/(7.9676 × 10 -5 ×0.5 × 10_) 2 + (4454699.4278 × 0.2 × 10-4) 2 + (-78.12 x 1.2184) 2

= -0.2125

_J( o9(E*'I''P')OrE)2OE + _,(°g(E*'I*'P*)'r"_2OI_,/ "_-( Og(E*,I*,P*)_,OP . , up:'_2

--78.12 × 1.2184

_/(7.9676 × 10-5 × 0.5 × 107)2 + (4454699.4278 × 0.2 × 10-4)2 + (-78.12 × 1.2184):

-- 0.2271
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(d) Computethe coordinatesof the new design point from Eq.(3.3.28):

= laE+/54aEO_E

= 2 × 107 + 3.3292 X 0.5 X 107 × (--0.9504)

= 4179859.5780

n = #I +/_4_iai

-- 10-4 + 3.3292 x 0.2 × 10-4 x (-0.2125)

= 0.8585 x I0-4

p* = #p + _40"pO_p

= 3.6939 + 3.3292 x 1.2184 x 0.2271

= 4.6151

E* - #E
t_ E --

4179859.5780 -2 x 10T

aE 0.5 X 10 _

I* - #_ 0.8585 x 10 -4 - 10-4

ql 0.2 X 10 -4

P* -/zp, 4.6151 - 3.6939

1.2184

= -3.1640

= -0.7076

O'pJ
= 0.7560

(e) Check/5 convergence

1/54- 3.6939 - 3.3766

3.3766

Since e > ¢r(0.001), continue the process.

= 0.094
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(6) Iteration 5:

(a) Compute the mean and standarddeviation of the equivalentnormal distribution at P*

The density function value at P* is

= aexp{-(P* - ,_)c_ - ezp[-(P* - _)a]}

- 1.2825-exp{-(4.6151 - 3.5499) x 1.2825 - exp[-(4.6151 - 3.5499) × 1.2825]}

= 0.2535

The cumulative distribution function value at P* is

Fp(P*) = exp{-exp[-(P*- 5)a]}

= exp{-exp[-(4.6151 - 3.5499) x 1.2825]}

= 0.7748

The standard deviation and mean value of the equivalent normal variable at P* are

O'pI --
¢(¢-,[F.(P.)])

fp(e-)
¢(¢-110.7748])

0.2535
0.3000

0.2535

= 1.1835

where ¢9-1[0.7748] = 0.7548 and ¢(0.7548) = 0.3000.

_P' = P"-

= 4.6151 -(I)-a[0.7748] × 1.1835

= 3.7217
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(b) Computethe function value and gradientsof the limit state function at X*(E*, I', P*)

g(E',I*,P*) = EI- 78.12P

- 4179859.5780 x 0.8585 x 10-4 - 78.12 x 4.6151

= -1.6961

Og(X*) _ 8.5848 x 10 -5
bE

Og(X*) _ 4179859.5779
OI

Og(X*) _ -78.12
OP

(c) Compute fl using Eq. (3.3.25) and the direction cosine ai

g(X') - °g(x')a-u* -*OE z_ E-- OI I I-- OP O'pup

( OE O'E) ÷ OI x OP _rl

-1.6961 + 858.48 x 0.5 x 3.1640 + 417.98 x 0.2 x 0.7076 + 78.12 x 1.1835 x 0.7560

_/(8.5848 × 10 -5 x 0.5 x 10_) 2 + (4179859.5779 x 0.2 x 10-4) 2 + (-78.12 x 1.1835) _

= 3.3232

C_E _--- --
051( E*,I°,P" ) "2

V I'/IO$(E*,I',P ° )OEO.E)_2 ÷ ( O$(E*,I*, P° )OiO'I) 2 ÷ ( OP ap)

8.5848 x I0-s x 0.5 x 107

_/(8.5848 x 10 -5 × 0.5 x 107) 2 + (4179859.5779 x 0.2 x 10-4) _ + (-78.12 × 1.1835) 2

= -0.9603

_/(O9(E*,I',P*)o.E) 2 ÷ [O9(E*,I*,P*)- _2 (O9(E*,I*,P*)- "_2k OE I Ol oi) ÷ I OP up)
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4179859.5779 × 0.2 x 10-4

_/(8.5848 × 10-5 x 0.5 × lOT)2 + (4179859.5779 × 0.2 x 10-4)2+ (-78.12 x 1.1835)2

-- -0.1870

Og(E'J',P') _2
Vt/,Og(E',1",P')OE aEJ_2 + _(°g(_"1"'P')az)2oi + ( oF ap)

-78.12 × 1.1835

_/(8.5848 x 10-S × 0.5 × 107)2 + (4179859.5779 x 0.2 × 10-4) 2 + (--78.12 x 1.1835)2

= 0.2068

(d) Compute the coordinates of the new design point from Eq.(3.3.28):

_ -- #E nt- _50"EOtE

= 2 X 107+ 3.3232 × 0.5 X 107 × (--0.9603)

= 4043172.7300

= #1+_salal

= 10-4 + 3.3232 x 0.2 × 10-4 × (-0.1870)

= 0.8757 × 10-4

_ = _p "{" _5ap(2p

= 3.7217 + 3.3232 × 1.1835 × 0.2068

= 4.5352

U E --
E* -- #E 4043172.7300 --2 × i0T

0"8 0.5 X 10 7

= -3.1914
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I* -_ui 0.8757 × 10 -4 - 10 -4
u_ = -- - = -0.6215

a/ 0.2 x 10-4

P* - #p, 4.5352 - 3.7217
Up - = 0.6874

o.p, 1.1835

(e) Check _ convergence

e - 1_5- _41 _ [3.3232 - 3.69391 = 0.1
f_4 3.6939

Since e > e_(0.001), continue the process.

(7) Iteration 6:

(a) Compute the mean and standard deviation of the equivalent normal distribution at P*

The density function value at P* is

= .exp{-(P- - - exp[-(P. -

= 1.2825. exp{-(4.5352 - 3.5499) × 1.2825 - exp[-(4.5352 - 3.5499) × 1.2825]}

= 0.2732

The cumulative distribution function value at P* is

Fp(P*) = exp{-exp[-(P*-5)a]}

= exp{-exp[-(4.5352- 3.5499) × 1.2825]}

= 0.75380

The standard deviation and mean value of the equivalent normal variable at P* are

O'p, -----

¢(¢-I[Fp(P*)])

fp(P')

¢(¢-110.7538])

0.2732
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0.3152
0.2732

= 1.1535

where (I)-1[0.7538] -- 0.6865 and ¢(0.6865) = 0.3152.

#P' = p'-¢-l[Fp(P*)]o-p,

= 4.5352 - ¢-1[0.7538] x 1.1535

= 3.7433

(b) Compute the function value and gradients of the limit state function at X*(E', I*, P*)

g(E*,r,P*) = EI-78.12P

= 4043172.7300 x 0.8757 x 10-4 - 78.12 × 4.5352

= -0.2352

Og(X') _ 8.7569 × 10 -s
OE

Og(X*) = 4043172.7299
OI

Og(X') _ -78.12
OP

(c) Compute/3 using Eq. (3.3.25) and the direction cosine c_i

& Ol I I- OP Y P

J oo +( o, .,
-0.2352 + 875.69 x 0.5 x 3.1914 + 404.32 x 0.2 x 0.621 + 78.12 x 1.1535 x 0.6874

V/(8.7569 x 10-s x 0.5 × 107)2+ (4043172.7299 × 0.2 × 10-4)2 + (-78.12 × 1.1535)2

= 3.3222
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_/(ag(E'a',P')_ _2 ,ag(E.,x.,P.) _2

8.7569 x 10 -5 x 0.5 x 107

_/(8.7569 x 10 -5 x 0.5 x 107) 2 + (4043172.7299 x 0.2 x 10-4) 2 + (--78.12 X 1.1535) 2

= --0.9638

_ff[Og(E*,I°,P*)- _2 09(E*,I*,P')- _2 rOg(E*,I°,P*)- "_2
', or or: + ( oz ox) + _ oP up:

4043172.7300 x 0.2 x 10 -4

_(8.7569 x 10 -5 x 0.5 x 107) 2 + (4043172.7299 x 0.2 x 10-4) 2 Jr (-78.12 x 1.1535) 2

= -0.1780

OLp = --

m

*,I*,P*)ff _2 Og(E*'I*'P*)ffl)2 + (Og(E*,I*,P*) a _2OE E) + ( OI OP P)

-78.12 × 1.1535

_/(8.7569 x 10 -5 × 0.5 × 107) 2 + (4043172.7299 × 0.2 x 10-4) 2 + (-78.12 × 1.1535) 2

= 0.1984

(d) Compute the coordinates of the new design point from Eq.(3.3.28):

_ "-" ].tE Jr _6aEOtE

= 2 × 107 + 3.3222 × 0.5 × 107 × (--0.9638)

= 3989701.3284

= _I +_6aiai

= 10 -4 + 3.3222 × 0.2 × 10 -4 × (--0.1780)

= 0.8817 × 10 -4

128



P" = #p + '86ffpO_p

= 3.7433 + 3.3222 x 1.1535 × 0.1984

= 4.5035

E* -- _ZE
UE "-

OrE

I* - #z
m

UI--
(71

3989701.3284 - 2 × 107

0.5 × 107

0.8817 x 10-4 - 10-4

0.2 x 10-4

p* _ #p,
Up _

= -3.2021

= -0.5914

4.5035 - 3.7433

gp, 1.1535
= 0.6590

(e) Check ,8 convergence

e = ]/36-/351 = 13.3222- 3.3232] = 0.0003

3s 3.3232

Since e < ¢r(0.001), stop the process.

The safety index/3 is 3.3222. Since the limit state function value at the MPP X* is close to

zero, this safety index can be considered as the shortest distance from the origin to the limit

state surface.

A computer program based on the RF algorithm is developed to perform the reliability

analysis. The flow-chart of the program is given in Fig. 3.11.

3.3.3 Efficient Safety Index Algorithms Using Approximations

Based on the linear, conservative, TANA [8] and TANA2 [10] approximations described in

the previous section, the following safety index algorithms and a corresponding computer code

AURORA (Approximations Used to Rapidly Obtain Reliability Analysis) have been developed.

The flow-chart of the safety index algorithms using approximations is shown in Fig. 3.12.
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I Define random variables,distributions, mean, std. dev.

t

Compute V 8k (U)Call ]W_M g,(U),

Compute 13 using Eq. 3.3.2S

lf l_l, compute f3 usin_ the maan value m¢th_d

I Compute new
/viPp'_"

No

Fig. 3.11 Flow-chart of RF/HL-RF Method
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. Transfer _Variables

Compute MPP X x _ u

Compute _ using [mean value method ]

I Define random variables, Idistributions, mean, std. dev.

X -._ X

I Cempute V gk (U)Call FEM gk(U)"

yes _

approximation

_k

t

[ Solve for [_ ]

Yes No

Fig. 3.12 Flow-chart of the Safety Index Algorithms using Approximations
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3.3.3.1 Approximate Limit State Function Using Linear Approximation (RF/HL-RF Method)

The algorithm based on the linear approximation is the same as the RF method. The limit

state function is approximated as Eq. (3.3.23) at the MPP, and the safety index is obtained

by solving iteratively the reliability problem given in Eq. (3.3.20). More details are given in

Sections 3.3.2.2 and 3.3.2.6.

3.3.3.2 Approximate Limit State Function Using Conservative Approximation

In the previous algorithm, the hypersufface G(U) was approached by the first-order Taylor

expansion at the MPP. For nonlinear problems, this approach is only an approximation, and

several iterations are usually required. How fast the algorithm converges depends on how

well the linearized limit state function approximates the nonlinear function g(U). Since

the conservative approximation has the advantage of including the linear and reciprocal

approximations in the formulation, a safety index algorithm using conservative approximation

is presented in AURORA.

The limit state function is approximated by the conservative approximation of Eqs. (2.3.7)

and (2.3.8). The safety index model of Eq. (3.3.20) becomes:

Minimize: /3(U) = (UTU) 1/_ (3.3.45a)

Subject to: _(V) = g(Uk) + fi C_ Og(Uk) (xi- x,,k) = 0 (3.3.45b)
i=l OXi

The main steps of this algorithm are summarized below:

1). For the first iteration, construct a linear approximation of Eq. (3.3.23) by using the

first-order Taylor's series expansion about the mean values, #;

2). Compute the most probable failure point Xk and safety index /3k using the HL-RF

method in U-space, U;

3). Obtain the nonlinear approximation of Eq. (3.3.45b)

4). Find the most probable failure point Xk+l of the nonlinear approximation function _(U)
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and safety index flk+l using the HL-RF method or DOT (Design Optimization Tools) [11], and

denote Xk+l as the current point and Xk as the previous point;

5). Check the convergence

= I k+1 - I

6). Go to step (3) and repeat the process until ¢ is less than the allowable value.

In step (4), the safety index/_ can be easily obtained only by computing the explicit function

_(U) given in Equation (3.3.45b), in which any optimization scheme or iteration algorithm can

be used. The computation of the exact performance function _(U) is not required; therefore

, the computer time can be reduced for problems involving complex and implicit performance

functions if the conservative approximation provides good accuracy.

3.3.3.3 Approximate Limit State Function Using Two-point Adaptive Nonlinear

Approximation (TANA)

The previous algorithms 1 and 2 both used the fixed approximation models to represent

the limit state functions. Even though the conservative approximation can be either a linear

or reciprocal approximation, the truncation errors of the approximations might be so large

that the algorithm may converge very slowly or even result in divergence for some complicated

highly nonlinear problems. Therefore, the use of adaptive approximations for different types

of problems is necessary and important. The adaptive approximations are constructed by

using the first-order Taylor series expansion in terms of adaptive intervening variables. The

nonlinearity of the adaptive approximations is automatically changed by using the known

information generated during the iteration process.

Based on the two-point adaptive nonlinear approximation (TANA) given in Eq. (2.4.3), the

safety index model of Eq. (3.3.20) is obtained as
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Minimize: fl(U) = (uTu) _/2 (3.3.46a)

Subject to: ._(U) = 0 (3.3.46b)

where _(U) is the approximate U-space limit state surface and computed as follows. First, the

adaptive approximate limit state surface in X-space is obtained as

1_-_ l_rOg(Xk)
O(X) = g(Xk) + - zi,k Oz----_(z_ - z_,k) (3.3.47)

r i=1

then, O(X) is mapped into _(V) by using the standard normal or

transformations,

equivalent normal

[7(U) = O(a=iul + #_,_,a=_u2 + #='2, ...,cr=,un + I_=, ) (3.3.48)

The nonlinear index r in Eq.(3.3.47) can be determined from Eq. (2.4.2), i.e,

- - ( = 0 (3.3.49)
r /----1 i,k OX i

In AURORA, r is numerically calculated by minimizing the difference between the exact and

approximate limit state function at the previous point Xk-1. In theory, r can be any positive

or negative real number (not equal to 0). r is restricted from -5 to 5 for the X-space iterations

in AURORA. The X-space and U-space iterations given in AURORA represent the safety

index algorithms in X-space and U-space, respectively. In X-space iterations, the limit state

function is approximated in the original space of the random variables (X-space), then the

approximation is transferred into U-space. In Y-space iterations, the limit state function is

directly approximated in U-space. The details of X-space and U-space iterations are given

later in this section. The iteration searching for r starts from r = 1. When r is increased

or decreased a step length (0.1), the difference e between the exact and approximate function

is calculated. If ¢ is smaller than the initial error (e.g. corresponding to r = 1), the above
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iteration is repeated until the allowable error e = 0.001 or limitation of r is reached, and the

nonlinear index r is determined. Otherwise, r is decreased by a half and the above iteration

process is repeated until the final r is obtained. This search is computationally inexpensive

because Eq. (3.3.49) is available in closed form and very easy to implement.

Usually, the adaptive safety index algorithm is better than the RF method because the

nonlinear index r is determined by comparing the linear approximation (starting from 1) and

minimizing the difference between the exact and approximate limit state functions. In the

process of searching for r, the nonlinear index will automatically become 1 if other values of r

can not provide any improvement over the linear approximation.

The main steps of this algorithm are summarized as follows:

1). In the first iteration, compute the mean and standard deviation of the equivalent normal

distribution at the mean value point for nonnormal distribution variables. Construct a linear

approximation of Eq. (3.3.23) by using the first-order Taylor's series expansion at an initial

point (if the initial point is selected as the mean value point, #, the linear approximation is

expanded at #), and compute the limit state function value and gradients at the initial point;

2). Compute the initial safety index/_1 using the HL-RF method and its direction cosine

ai (if the initial point is the mean value point, the mean value method is used);

3). Compute the new design point using Eq. (3.3.28), Xk;

4). Compute the mean and standard deviation of the equivalent normal distribution at Xk

for nonnormal distribution variables. Calculate the limit state function value and gradients at

the new design point, Xk;

5). Determine the nonlinearity index r by solving Eq. (3.3.49) based on the information of

the current and previous points (when k equals to 2, previous design point is the mean value

X');

6). Obtain the adaptive nonlinear approximation of Eq.(3.3.47);

7). Transform the X-space approximate limit state function into the U-space function using
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Eq. (3.3.48);

8). Find the most probable failure point Xk+l of the approximate safety index model given

in Eq. (3.3.46) using the HL-RF method or DOT and compute the safety index/3k+1;

9). Check the convergence

10). Stop the process if e satisfies the required convergence tolerance (0.001), otherwise,

Continue;

11). Compute the exact limit state function value and approximate gradients at Xk+l, and

estimate the approximate safety index _k+l using the HL-RF method;

12). Approximate/3 convergence check

13 +1-/3 1
C"-

/3k

13). Continue the process if _ satisfies the required convergence tolerance (0.001), otherwise,

stop;

14). Compute the exact gradients of the limit state function at Xk+l and go to ste p 5);

repeat the process until/3 converges.

In step (8), the safety index/3 of the approximate model given in Eq. (3.3.46) can be easily

obtained only by computing the explicit function ._(U), in which any optimization scheme or

iteration algorithm can be used. The computation of the exact performance function g(X) is

not required; therefore , the computer time is greatly reduced for problems involving complex

and implicit performance functions, particularly with finite element models.

Example 3.8

This example is the same as Example 3.3b. The safety index algorithm using TANA is used

to solve/3.
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(1) Iteration 1:

(a) Set the meanvaluepoint as an initial designpoint and required_ convergencetolerance

as er = 0.001. Compute the limit state function value and gradients at the mean value point

= 10.03 + 9.93- 18

= 1952.299

Og

Oxl )" = 3_I = 3 x 102 = 300

Og

Ox2 I. = 3_2 = 3 x 9.92 = 294.03

(b) Compute the initial _ using the mean value method and its direction cosine _i

a_

g(x')

IIog(_=_,_'=2) o- _2 0g('=1,"=2) o.==)2_. o=i =1! + ( 0=2

1952.299

V/(300 × 5.0) 2 -{- (294.03 x 5.0) 2

- 0.9295

C_1

/_ og(.=, ,_,=_)a=l )2 + ( og(_,.,,_,==)o=_ )2
V t 0=1 _" _=2

300 × 5.0

J(aoo ×5.012+ (294.o3×5.o)2
= -0.7142
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J
V(°"_%_"_=,)_ + ( o_ _

294.03 × 5.0

_/(300 x 5.0) 2 + (294.03 x 5.0) 2

= -0.6999

(c) Compute a new design point X* from Eq. (3.3.28)

X 1

= I0.0+ 0.9295 x 5.0 x (-0.7142)

= 6.6808

X 2 = lz_2 + 13,a_a2

= 9.9 + 0.9295 x 5.0 x (-0.6999)

= 6.6468

(2) Iteration 2:

u_ - x_ - #=_ _ 6.6808 - 10.0 = -0.6638
a=1 5.0

. x_ -/_ 6.6468 - 9.9 = -0.6506
?_2--

a_ 5.0

(a) Compute the limit state function value and gradients at X*

g(x') = 9(x;,x;) = x;3+ _;3_ 18

= 6.68083 + 6.6468 _ - 18

= 573.8398
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Og

Oxl ]u = 3x_ 2 = 3 x 6.68082 = 133.8982

_]_ 3x_ 2 3 6.64682 = 132.5409X

(b) Compute the nonlinearity index r based on the function values and gradients of the two

points #(10.0, 9.9) and X*(6.6808, 6.6468) using Eq. (3.3.49), that is

1
= 1952.299 - {573.8398 + -.

r

[6.6808 a-_ × 133.8982 x (10 _ - 6.6808 _) +

6.6468 t-_ x 132.5409 x (9.9 _ -6.6468_)]

< 0.001

where Xk_,=#(10.0, 9.9) and Xk=X'(6.6808,6.6468).

Using the adaptive search procedure mentioned before, r can be solved as r = 3.0.

(c) Construct the two-point adaptive nonlinear approximation (TANA) using Eq. (3.3.47)

_(x) _ I-T x;- ,,k)= g(Xk) + 1 _z_,k Oxi
r i=1

1. [6.6808_ _ × 133.8982 x (z_ - 6.68083) +
= 573.8398 +

6.6468 -2 × 132.5409 × (x_- 6.64683)]

= _}+ _]- 18.0

(d) Transfer the above X-space approximate limit state function into the U-space function

using Eq. (3.3.48)

O(u) -- _(o._ + _,,_:_: + _)
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-" (SUl + 10) 3 -k- (5u2 + 9.9) 3 -- 18.

(e) Find the most probable failure point X* of the approximate safety index model given

in Eq. (3.3.46) using DOT

After four iterations, the MPP point is found as

x: = 2.0718,

u: = -1.5856,

(f) Compute the safety index 82

x 2 = 2.0883

u 2 = -1.5623

82 = X/u 2+u 2

= _/(-1.5856) 2 + (-1.5623) 2

= 2.2260

(g) Convergence check

182 - 811 2.2260 - 0.9295
- = 1.3948

8: 0.9295

Since e > :T(O.O01), continue the process.

(3) Iteration 3:

(a) Compute the limit state function value at X*

g(x') = g(x'l,x_) = x_ 3 + x_ 3- 18

= 2.07183 + 2.08833 - 18

= -0.1276 x 10 -5

(b) Compute approximate gradients using the approximate limit state function
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- 3 × 2.07182 = 12.8769

Ox2 ]_ = 3x_2 = 3 × 2.08832 = 13.0832

(c) Compute approximate safety index _ using the HL-RF method (Eq. 3.3.25) and the

direction cosine ai

O:r,1 xl xl Ox.2 O'x2 Ux2

): a x._ ,:
-0.1276 x 10 .5 - 12.8769 x 5 x -1.5856 - 13.0832 x 5 x -1.5623

= 2.2258

V/(12.8769 × 5) 2 + (13.0832 × 5) 2

(d) Approximate convergence check

t33- f2.2258- 2.22601_ 0.o00o9
_2 2.2260

Since v < _r(0.001), stop the process. The final safety index is 2.2258. Compared with the

result of Example 3.3b (_ = 1.1657), the safety index algorithm using TANA is much more

efficient for this example. It only needs 3 g-function and 2 gradient calculations to reach the

convergent point. Since the g-function value is very small, the final MPP is on the limit state

surface.

In the above algorithm, the nonlinear approximation of the limit state function is performed

in the original space of the random variables, hence the nonlinear approximation only represents

the nonlinearity of the performance function in X-space and does not include the nonlinearity

of the distribution transformation. In general, the nonlinearity of the transformed performance

function g(U) depends not only on the nonlinearity of the performance function in original space

but also on the distribution transformation. Even a linear performance function in X-space may

result in a nonlinear performance function in U-space because of the transformation. Therefore,
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directly approximating the transformed performancefunction g(U) of U-space instead of g(X)

in X-space may be closer to the exact function for non-normal distributions. However, for

U-space approximation, the intervening variables (Eq. 2.4.1) may become impractical because

the standard variables in U-space are usually negative.

In order to construct an adaptive nonlinear approximation in U-space, improved intervening

variables are denoted as Y = (yx, y2, ...y,)r.

yi = (ui + #_'s) r i = 1,2,...,n (3.3.50)
O'xi

where ui (i = 1,2, ..., n) is the standard normal variable, #x, (i = 1, 2, ..., n) is the mean value,

ax_ (i = 1, 2, ..., n) is the standard deviation, r is the nonlinearity index, which mainly controls

the functional nonlinearity, and s is the coefficient of coordinates shift which preserves the

positiveness of normed coordinates and gives an additional degree of freedom for improving

the accuracy. Both parameters, r and s can be selected appropriately by using the following

feedback formula based on two analyses information at Yk-a and Yk (Yk is the current point

and Yk-1 is the previous point).

g(Yk-1) - {g(Yk) + 1_ (l_,.)O_k)[(ui,k_ 1 _is)" -_ir Yi,k + -- (ui.k + s)_]} = 0 (3.3.51)
i " ¢Yi

This equation has two unknown parameters r and s, which can be optimally determined by

minimizing the error e. In theory, the nonlinearity index r can be any positive or negative real

number (not equal to 0), and the coefficient of coordinates shift s can be selected as any positive

number (for simplicity it is selected as positive integer in this work). However, the nonlinearity

index r increases fast when s increases, which may result in large r if s has a larger value for

some problems. Therefore, in the algorithm implementation, r is restricted from -20 to 20, and

the shift s is restricted from 1 to 15 for non-normal distributions (_ is selected as 1 for normal

distributions). The iteration for calculating r and s starts from r = 1 and s = 1. When r is

increased or decreased a step length (0.1), s is changed from 1 to 15, and a combination of r

and s with the smallest error e is obtained. If this error is smaller than the initial error (e.g.
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corresponding to r = 1 and s = 1), the above iteration is repeated until the allowable error

¢ = 0.001 or limitation of r is reached, and the optimum combination of r and s is determined.

Otherwise, the step length of r is decreased by a half and the above iteration process is repeated

until the final r and a are obtained.

Based on the above intervening variables given in Eq. (3.3.50), the nonlinear approximation

in U-space can be obtained from the following equation

1 G O-_)cgg(Yk) 3ci _ Ycis_g(Yk ) +
r 2..,Yi,k Oui [(ui + _//s) - (ui,k + , ] (3.3.52)

i (Yi "

The main steps of this U-space safety index algorithm are summarized as follows:

(1) In the first iteration, construct a linear approximation to the original performance

function by using a first-order Taylor's series expansion about the mean values of the random

variables,/z;

(2) Transfer the original random variables in X-space to the standard normal variables in

U-space by using the approximate distribution transformation of Eq.(3.3.39);

(3) Compute the most probable failure point Uk and safety index flk using the RF method

in U-space;

(4) Establish the feedback formula of U-space Eq. (3.3.51) by using the intervening variables

of Eq. (3.3.50) and the first-order Taylor's series expansion based on the information of the

current point Uk and the previous point Uk-G

(5) Determine the optimum combination of the nonlinearity index r and the coefficient s

by minimizing the error e of Eq. (3.3.51);

(6) Construct the nonlinear approximation of the performance function (3.3.52) based on

the intervening variables Eq. (3.3.50);

(7) Find the most probable failure point Uk of the nonlinear approximate function _(U) and

the safety index flk using the HL-RF or DOT;
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(8) Check the convergence

= I& &-a
&-i I

If the convergence is not satisfied, go to step (9);

(9) Compute the exact value of the g-function at Uk and using this value and the approximate

gradients obtained from _(U) solve for the safety index fl_;

(10) Check the convergence

If the convergence is not satisfied, compute the exact gradients,and go to step (4) and repeat

the process until convergence is reached.

A significant reduction in computer effort results from the use of the approximate function

in step (7). Exact function evaluation is avoided and _(U) given in Eq. (3.3.52) is used to

solve the function value and gradients. This method is particularly suitable for problems with

highly nonlinear and implicit performance functions needing large scale finite element models

for structural analysis.

3.3.3.4 Approximate Limit State Function Using Improved Two-point Adaptive Nonlinear

Approximation

The difference between this algorithm and the above algorithm is that the limit state

function is approximated by the TANA2 approximation given in Eq. (2.4.9) since TANA2

provides better accuracy in some complex cases. The main steps of the X-space algorithm

using TANA2 are summarized as follows:

1). In the first iteration, compute the mean and standard deviation of the equivalent normal

distribution at the mean value point for nonnormal distribution variables. Construct a linear

approximation of Eq. (3.3.23) by using the first-order Taylor's series expansion at an initial

point (if the initial point is selected as the mean value point, /.t, the linear approximation is

expanded at #), and compute the limit state function value and gradients at the initial point;

144



2). Compute the initial safety index fll using the HL-RF method and its direction cosine

ai (if the initial point is the mean value point, the mean value method is used);

3). Compute the new design point using Eq. (3.3.28), Xk;

4). Compute the mean and standard deviation of the equivalent normal distribution at Xk

for nonnormal distribution variables. Calculate the limit state function value and gradients at

the new design point, Xk;

5). Determine the nonlinearity index Pk (k = 1,2,...,N) by solving Equations (2.4.10)

and (2.4.11) based on the information of the current and previous points (when k equals to 2,

previous design point is the mean value X);

6). Obtain the adaptive nonlinear approximation of Eq.(2.4.9);

7). Transform the X-space approximate limit state function into the U-space function using

Eq. (3.3.48);

8). Find the most probable failure point Xk+l of the approximate safety index model given

in Eq. (3.3.46) using the HL-RF method or DOT and compute the safety index ilk+l;

9). Check the convergence

10). Stop the process if e satisfies the required convergence tolerance (0.001), otherwise,

Continue;

11). Compute the exact limit state function value and approximate gradients at Xk+x, and

estimate the approximate safety index flk+l using the HL-RF method;

12). Approximate fl convergence check

13). Stop the process if e satisfies the required convergence tolerance (0.001), otherwise,

Continue;

145



14). Compute the exact gradients of the limit state function at Xk+l and go to step 5);

repeat the process until/_ converges.

In step (8), the safety index _ is iteratively computed for the explicit approximate function

_(X). Any iterative algorithm can be used for finding the MPP. The computation of the exact

performance function _(X) is not required; therefore, the computer time is greatly reduced for

problems involving complex and implicit performance functions, particularly with finite element

models.

Example 3.9

The performance function is

g(xl, x2) = xlx2 - 1400

in which xl and x2 are the random variables with lognormal distributions. The mean values

and standard deviations of two variables are: #-1 = 40.0, #-2 = 50.0, ax, = 5.0, ax_ - 2.5. The

safety index algorithm using TANA2 is used to solve the safety index/_.

(1) Compute the mean values and standard deviations of a normally distributed variables

yl and y2 (Yl = lnXl, y2 = lnx2) using Eqs. (1.53) and (1.54),

= 0.1245

¢Ty_ = 2+ 1]
V _

_/ 2.5 2= /n[(5--0_.0 ) + 1]

= 4.9969 x 10 -2
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1

= ln40- _ x 0.12452

= 3.6811

1 2

#_2 = ln#_ 2 -'_a_2

1

= ln50- -_ × (4.9969 × 10-2) 2

= 3.9108

(2) Iteration 1:

(a) Compute the mean values and standard deviations of the equivalent normal distributions

for xl and x2:

First, assuming the design point, X* = {x_, x_} T, as the mean value point, the coordinates

of the initial design point are

s

Xz = #-1 = 2 × 40.0,

The density function values at x_ and x_ are

x2 = #_2 = 50.0

1 . 1.lnx_-#yl

_ ./_x;_l_pt__( ,_ )2]

1 exp[_l( In40 - 3.6811= x/_ × 40 × 0.1245 0.1245 )2]

= 7.9944 -2

1 1 Inx_ - #_2

= v,_o_P[-_ ( --o-_,_)2]
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1
x 50x 4.9969x 10-2

= 0.1596

1 ln50 - 3.9108 2
_xP[-_(4--_6-6 _ i-_-_)]

¢(¢-l[Fxl(x;)]) 1 1 Inx I -- #Yl )2]

- v_ _zp[-_( _1
1 1 In40- 3.6811

- v_P[- 2 ( 5:72_g )_]

= 0.3982

1 1 Inx_ - #_)2]
= _p[-_( :7-:

1 1. ln50 - 3.9108

= _exp[-_(4.9969 × 10 -_ )_]

= 0.3988

Therefore the standard deviation and mean value of the equivalent normal variable at P*

from Eqs. (3.3.44a) and (3.3.44b) are

axl
¢(V-_[F_,(x;)])

fXl (X;)

0.3982

7.9944 x 10 -2

= 4.9806

0.3988

0.1596

= 2.4984
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40 - 6.2258-2 × 4.9806

39.6899

x_- ¢-1 [F.2(=;)]o_

50 - 2.4984 × 10 -2 × 2.4984

= 49.9376

(b) Set the mean value point as an initial design point and required/? convergence tolerance

as e_ = 0.001. Compute the limit state function value and gradients at the mean value point

g(x-) = g(_.,,,_2) = _=,_=_- 1400

= 40x50-1400

= 600.0

Og

c9zl [_' = 1_=2= 50

Og

Ox--_2Iv = #=1 = 40

(c) Compute the initial fl using the mean value method and its direction cosine a_

i.

g(x')

r °g(,=l ,_'=2) )2 ( og(_=l ,,=2)
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6OO

_/(50x 4.9806)2 ÷ (40 x 2.4984) 2

= 2.1689

Ilag(,=l,_',,2) a , )2_, o=1 =1 + (°g(#=l_o=2'_'=2)a=_)2

50 x 4.9806

_/(50 x 4.9806) 2 + (40 x 2.4984) 2

= -0.9281

O_ 2 ----

Itog(_,,,_ '_'==)o" , )2 (og(,=_ ,_'=2)_, o=i =1 + ', o== °'=_) 2

40 x 2.4984

y/(50 × 4.9806) 2 + (40 × 2.4984) 2

= -0.3724

(d) Compute a new design point X* from Eq. (3.3.28)

x¢

X 1 = #=I + flla= lal

= 39.6899 + 2.1689 × 4.9806 × (-0.9281)

= 29.6645

X 2 = /_=_ + 81_=_(x2

= 49.9376 + 2.1689 × 2.4984 × (-0.3724)

= 47.9194
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(3) Iteration 2:

ul -- = -2.0129

. x2 -- p_
us = - -0.8078

o'z_

(a) Compute the mean values and standard deviations of the equivalent normal distributions

* and *"for x 1 x2.

The density function values at x_ and z_ are

x* 1 1 lnx_-

O'y I

ln29.6645 - 3.6811= 1 exp[- ( )21
× 29.6645 × 0.1245 _-24-5

= 7.0144 -3

1 r 1,1nx_-

-- v"_x_au2 exPt-2 ( _r_ _u_ )2]

_ 1 exp[- 1 ln47.9194 - 3.9108
- v/_×47.9194×4.9969×10 -2 7 ( _xl-O :_ )_]

= 0.1185

¢(_-_[E_(_7)]) i i Inx_ - Iz_, )2]
= _p[-_( _-:

1 1. ln29.6645 - 3.681

= 2.5909-:

I 1 lnx_ - gy_ )2]¢(¢-_[F_:(_;)])- v_¢_p[__( _
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1 1 /n47.9194 - 3.9108
F [

_xpt-_ 4.9969× 10-2
= 0.2837

)5]

Therefore the standard deviation and mean value of the equivalent normal variable at P*

from Eqs. (3.3.443) and (3.3.445) are

crx_ --

7.0144 .3

= 3.6937

O-x,_ --

¢(¢-l[F_2(x;)])
Ix2(_;)

0.2837

0.1185

= 2.3945

_._ = _ - ¢-1[&1(-1)1_=_

= 29.6645 - (-2.3384) x 3.6937

= 38.3021

*- ¢-_[f= ( 1)]--_" X2 2 X Gx_

= 47.9194 - (-0.8256) × 2.3945

= 49.8963

(b) Compute the limit state function value and gradients at X*
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g(x') = g(xl,x2) = xlx2. * - 1400

= 29.6645 × 47.9194 - 1400

= 21.5041

x" = x: = 47.9194

Og •

Ox2 Ix" = xl = 29.6645

(c) Compute the nonlinearity indices Pl and p: based on the function values and gradients

of the two points #(40, 50) and X*(29.6645, 47.9194) using Eqs. (2.4.10) and (2.4.11), that is

0g(,) _ (_)p,_l ag(x')- 0xl

4O

50 = (29.6645)p,-147.9194 + _2(40 pl - (47.9194")pl)40Pl -lpl

5O

40 = (47.9194)P2-_29"6645 + _(50P2 - (47"9194*)P2)50P2-_P2

og(x') (_;)_-_,
i=1

2

i=1

600 =
29.66451-pI

21.5041 + 47.9194 × (40 p_ - 29.6645P_ )
Pl

47.91941-_
+29.6645 × .(50 p_ - 47.9194P:

P2

1 p_ )_+_[(z_ - (x;)_, + (_g_- (_)_):]
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Based on the above three equations, pi and ¢2 can be solved using the adaptive search

procedure.

Pl = 1.0375, P2 = 1.4125, e2 = 0.1

(d) Construct the improved two-point adaptive nonlinear approximation (TANA2) using

Eq. (2.4.9)

2
Og(X*) 1 2

= g(x') +
i=1 _Xi i=1

29.66451-1.03rs

= 21.5041 + 47.9194 x 1.0375 (x_°3r5 - 29"66451°3_5)

47.91941-1.4125

+29.6645 × 1.4125 (X1"4125- 47"91941"412s)

+_-_[(x_ .o375 _ 29.66451-o3_s)2 + (x_ "4125_ 47.91941.4125) 2]

= 21.5041 + 40.6738(x_ "°3T5 - 29.66451"°375) + 4.2564(x_ .412s - 47.91941.412s)

+_[(x] .°3_5 - 29.66451-o3_5)2 + (x_ -412s _ 47.91941-4125) 21

(e) Transfer the above X-space approximate limit state function into the U-space function

using Eq. (3.3.48)

= _(a_lUl + #_i,a_u2 + #_:,)

= 21.5041 + 40.6738[(3.6937#1 + 38.3021) 1"°37s

+4.2564[(2.3945tt2 + 49.8963) 14125

0.1

+-_-[((3.6937ttl + 38.3021) 1"°37s -

+((2.3945tt2 + 49.8963) 14_25

_ 29.66451-0375]

_ 47.91941-4125]

29.66451.o375) 2

_ 47.91941.412s) 2]

(f) Find the most probable failure point X* of the approximate safety index model given in

Eq. (3.3.46) using DOT
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After two iterations, the MPP point is found as

z x = 29.3517, x 2 = 47.6961

* * -0.9191u 1 = -2.4236, u 2 =

At each iteration, the mean value and standard deviation

distributions at the new design point X* need to be calculated.

(g) Compute the safety index/_2

of the equivalent normal

32 = X/u; 2 + u; 2

= V/(-2.4236)2 + (-0.9191) 2

= 2.5920

(h) Convergence check

e - I/_2 - _] - 2.5920 - 2.1689 _- 0.1951
81 2.1689

Since _ > _,(0.001), continue the process.

(4) Iteration 3:

(a) Compute the mean values and standard deviations of the equivalent normal distributions

for x 1 and x 2.

The density function values at z_ and x_ are

= 1 1 lnx_ - #y_

)21
1 1 _1n29.3517 - 3.681

V'_ × 29.3517 × 0.1245exp[--2 t" -0"-__24i

= 5.7886 X 10 -3

1)2]
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1 _xp[- 1 l,_x_- ,_ )2]
- v_x_. 2( o_

1 1 /n47.6961 - 3.9108

= _ × 47.6961 × 4.9969 × lO-2exp[-2 ( _ × 10 -2 )2]

= 0.1097

¢(¢-1[F_1(_1)])
1 , lllnx_-#_l

- ._,/_xPL-_ :_ )_]
1 1 /n29.3517 - 3.6811

- _-_v[- _( b-5-2¥5 )2]

= 2.1156 -2

¢((I)- 1 [Fx2 (x_)]) - v__7_p[-_( _ )_]

1 1 ( ln47.6961 - 3.9108
- v_-7_p[-_ _ ; _ )_]

= 0.2615

Therefore the standard deviation and mean value of the equivalent normal variable at P*

from Eqs. (3.3.44a) and (3.3.44b) are

Crz_ ----

5.7886 -3

= 3.6548

O'x_ --

¢(V-I[F_(_)])
X _f._(2)

0.2615

0.1097

= 2.3833
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= _ - ¢-l[y_,(zT)]o_

= 29.3517 - (-2.4236) × 3.6548

= 38.2094

= 47.6961 - (-0.9191) × 2.3833

= 49.8865

(b) Compute the limit state function value at X*

g(X*) = g(xl,x2) = xlx2. " - 1400

= 29.3517 x 47.6961 - 1400

= -0.0359

(c) Compute approximate gradients using the approximate limit state function

o_
Ox----_[_ = 47.8569

°_l. =28.5261
Ox2

(d) Compute approximate safety index fl using the HL-RFmethod (Eq.

direction cosine a_

3.3.25) and the

- X'*g(X') - °_(x') a , _* °_(X') o", u*
_x] x 1 Xl Ox2 x 2 x2

_/(o_(x.)o ,)_ o__._,, ,__, Oxx xl + ( Ox2 x2 /

-0.0359 - 47.8569 × 3.6548 x -2.4236 - 28.5261 × 2.3833 × -0.9191

= 2.5917

V/(47.8569 × 3.6548) 2 + (28.5261 × 2.3833) 2
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(e) Approximate convergence check

_ 1/_3 -/32 _ 12.5917 - 2.59201 = 0.0001
/_2 2.5920

Since _ < cr(0.001), stop the process. The fined safety index is 2.5917.

3.3.3.5 Algorithms Comparison

In this section, severed examples axe used to compare the efficiency of the algorithms

introduced in this chapter. These examples include problems with highly nonlinear, explicit

and implicit performance functions which required finite element analyses. Furthermore, the

summary of the safety index analysis is given.

Example 3.10

The performance function is given in Example 3.1. Two cases axe considered in this example.

In case 1, the mean values of xl and x2 axe 10 and 9.9, respectively, and the standaxd deviations

of both variables are 5.0 (the same as in Example 3.3b). The mean and standard deviation of

the case 2 axe 10 and 5.0, respectively (the same as in Example 3.1). The comparison of the

results obtained from the above four algorithms and the mean value method is shown in Table

3.1.

For case 1, the above algorithms 3 and 4 need only 3 g-function calculations and 2 gradient

calculations to find the convergent solution, while the HL-RF method and algorithm 2 fail

to the correct MPP on the limit state surface after 23 and 22 iterations, respectively, due to

oscillation. Fig. 3.13 shows the MPP and how the algorithm s 3 and 4 converge in three steps.

HL-RF method approaches the limit state surface in the first few iterations, but after the fifth

step, it completely diverges and oscillates away from the solution. For case 2, all the methods

converge with a different number of iterations (Fig. 3.14). The algorithms 3 and 4 also need

3 g-function calculations and 2 gradient calculations to find the convergent solution, while the

HL-RF method and algorithm 2 need 7 iterations to converge.
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Fig.3.13 Iteration History of Example 3.10 (case 1)
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Fig.3.14 Iteration History of Example 3.10 (case 2)
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Example 3.11

This example is taken from the NESSUS manual [12]. The performance function is

g(Xl, X2) = X_ + X2 -- 8.7577

in which xl and x2 are the random variables with normal distributions (mean=10, Cov=0.3).

The results comparison is listed in Table 3.2, which shows that the present method converges

fast. Also, it shows the iteration history of the present method, and r is quite close to the

nonlinearity of the real performance function.

Example 3.12

This example has a highly nonlinear performance function

g(xl,x2) = x 4 + 2x 4- 20

in which xl and x_ are the random variables with normal distributions (mean/_-1 =/_*_ = 10.0,

standard deviation a_ 1 = a, 2 -- 5.0). The comparison of safety index results is shown in Table

3.3. In this example, the coefficient of coordinates shift s is selected as 1 and the nonlinearity

index r is always equal to 4 in each step, this is the same as the nonlinearity of the performance

function. The comparison results show that methods 3 and 4 are quite efficient in both X-

space and U-space with only two iterations and an additional function calculation at the end

of the iteration process. The HL-RF method and algorithm 2 did not converge even after 101

iterations. These two methods started from the mean values and approached the constraint

surface in the first few iterations, but after the fifth iteration, they completely diverged from the

constraint surface. After several iterations they oscillated between/3 = 0.9267 and/3 = 0.9862.

Example 3.13 313-member frame

This example has an implicit performance function needing finite element analysis. The

frame structure shown in Fig. 2.3 has an I section modelled with 313 elements. Young's
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Table 3.2 Comparison of Methods for Example 3.11

Method

Iter. 1

Iter. 2

Iter. 3

Iter. 4

Iter. 5

Final

HL-RF

1.6853

2.5372

2.9521

Method 2

1.6853

2.5372

2.9521

Method 3

1.6853

3.1076 (2.0")

3.0583

3.0585

3.0585

3.0583

3.0585

3.0585

3.0584

3.0588 (1.975")

3.0588

g-func, calculations. 5 5 3

Gradients calculations 5 5 3

Method 4

1.6853

3.0588 (2.0,1.0")

3.0588

3.0588

1. The values with an asterisk (,) represent the nonlinearity index r for TANA.

2. The values with an double asterisk (**) are the nonlinearity indices Pz and p_ for TANA2.

Table 3.3 Comparison of Methods for Example 3.12

Method

Iter. 1

Iter. 2

Iter. 3

Iter. 4

Iter. 101

KL-RF

0.6704

1.1900

1.5685

1.6000

Method 2

0.6704

1.1900

1.5686

1.6016

Method 3

0.6704

2.3655 (4.0")

2.3655

Method 4

0.6704

2.3655(4.0,4.0-)

2.3655

0.9267 0.9267 -- --

Finale 0.9267 1.6016 2.3655 2.3655

g-func, calculations. 101(not conver.) 101(not conver.) 3 3

10Z(not conver.) lOl(notconver.)Gradients calculations

1. The values with an asterisk (,) represent the nonllnearity index r for TANA.

2. The values with an double asterisk (**) are the nonlinearity indices Pl and P2 for TANA2.
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modulus E and the cross-sectional areas of all members are selected as the random variables

with normal distributions, and the total number of random variables is 314. The area moment

of inertia Iz is expressed as explicit nonlinear functions of A in the form Iz = 0.2072A. The

vertical loads at nodes 15, 16, 88, 89 are -26, -30, -18, -20 kips, respectively. The horizontal

loads at nodes 6, 11, 17 through 65 by 3, 68 through 82 by 7, and 90 through 175 by 5 are 4 kips.

The horizontal load at node 1 is 2 kips. After the first analysis, the most critical constraint

of the total 358 displacement constraints for this load case, i.e. the vertical displacement d at

point 16 is taken as the limit state function, which is an implicit function of random variables

and is written as

g(X) = 1. - d/dzim

where dh'm is the displacement limit of 4.0 in. The mean value of Young's modulus E is 2.9 × 107

psi, with coefficient of variation (Cov) 0.08; all the element areas have a mean of 28.0 in 2, with

Coy 0.08. The coefficient of coordinates shift s is selected as 1. The comparison of results

presented in Table 3.4 shows that algorithm 3 in both X-space and U-space axe very efficient

for this complex implicit problem; only four iterations were needed to converge even though

HL-RF method needed 45 iterations to converge to a local solution. The ng count in Table 3.4

assumes finite difference calculation of gradients with respect to 314 random variables.

3.4 Summary

In this chapter, some basic concepts on the safety index and MPP calculations were

introduced. The details of the Mean Value, HL, HL-RF and developed safety index algorithms

using approximations were given. The numerical results showed that the mean value and

HL/HL-RF method work well for the linear problems, however the HL/HL-RF may not converge

even though many iterations are reached for highly nonlinear problems. The safety index

algorithms using two-point adaptive nonlinear approximations are more efficient and stable
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Table 3.4 Results Comparison for 313 Member Frame

Method HL-RF

ng

315

315

315

315

Algorithm 3 AJgorithm3

X-Space

P ng

1.0513 - 315

3.4147 -2.5 315

3.8549 -0.5 315

3.8517 1.0 315

Iter. No.

1 1.0513

2 2.0343

3 2.9496

4 3.7982

4.5854 315

5.3146 315

... ...

12.540 315

14175

5

6

...

45

U-Space

P ng

1.0513 - 315

3.4146 -2.5 315

3.8542 -0.5 315

3.8521 1.0 315

Total ny 1260 1260

Final Value 0.000442 0.000265 0.000466

ofg-function Local Solution Converged Converged

than HL/HL-RF for the highly nonlinear problems. In paxticular, the method with TANA2

works the best compared to other methods in most cases.
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CHAPTER 4. FAILURE PROBABILITY CALCULATION

4.1 Monte Carlo Simulation

The Monte Carlo method was developed during World War II by Von Neumann and Ulam

as a means of analyzing nuclear fission chain reactions. The application of the Monte Carlo

method to probabilistic structural analysis problems is comparatively recent. This method

became practical only with the advent of digital computers. It is a powerful mathematical

tool for determining the approximate probability of a specific event that is the outcome of

a series of stochastic processes. The Monte Carlo method consists of digital generation of

random variables and functions, the statistical analysis of trial outputs, and variable reduction

techniques. These are discussed briefly in this section.

In this section, the general principle of the Monte Carlo Simulation is introduced first

(Section 4.1.1); and two key techniques needed in using the Monte Carlo method, such as the

generation of uniformly distributed random numbers, and the generation of random variables

which axe given in Section 4.1.2 and Section 4.1.3, respectively. The direct Monte Carlo and

the modification of Monte Carlo (importance sampling) are introduced in Sections 4.1.4 and

4.1.5, respectively.

4.1.1 General Principle of the Monte Carlo Simulation

As the name implies, Monte Carlo simulation techniques involve "sampling" at "random"

to artificially simulate a large number of trials and observe the result. In the case of analysis

for structural reliability, in the simplest approach, this means sampling each random variable

xi randomly gives a sample value &_. The limit state function g(._) = 0 is then checked. If the

limit state function is violated, the structure or structural element has "failed". The trial is

repeated many times. In each trial, sample values are digitally generated and analyzed. If/V
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trials are conducted, the probability of failure is given approximately by

m(g< 0)
P_ _ (4.1.1)

where m is the number of trims for which g < 0 out of the N experiments conducted.

In principle, the Monte Carlo simulation is only worth exploiting when the number of trials

or simulations is less than the number of integration points required in numerical integration.

This is achieved for higher dimensions by replacing the systematic selection of points by a

"random" selection, under the assumption that the points selected will be in some way unbiased

in their representation of the function being integrated.

Example 4.1

This example is taken from Ref. [1]. Some leaks were detected on the weld seam between

the tubes and the tubesheet of a horizontal heat exchanger. To analyze the leakage events

or failure that occurred in the heat exchanger, the following probable reasons are considered:

(A) There was a preexisting crack at the time of manufacturing and it was not detected; (B)

the crack grew to a critical size when unsteady operation resulted in fatigue; and (C) stress

corrosion cracking (SCC) occurred. The probability of the occurrence of events A, B and C

is P(A)--0.2, P(B)=0.15, P(C)--0.4, respectively. Random numbers generated for use in this

example only are listed as 0.1, 0.09, 0.73, 0.25, 0.33, 0.76, 0.52, 0.01, 0.35, 0.86, 0.34, 0.67, 0.35,

0.48, 0.76, 0.80, 0.95, 0.90, 0.91, 0.17, 0.37, 0.54, 0.20, 0.48, 0.05, 0.64, 0.89, 0.47, etc. The

probability of failure for the heat exchanger is estimated using the Monte Carlo method.

To solve the failure probability P], first assume that (1) the event does not occur if the

value of random numbers generated is greater than the probability of occurrence for the event,

and is denoted by 0; (2) the event occurs if the value of random numbers generated is smaller

than the probability of occurrence for the event, and is denoted by 1. The simulation procedure

is shown in Table 4.1. The trial is repeated 50 times (iV = 50) and 22 samples (m = 22) lead
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to failure, so the failure probability can be computed approximately as

m 22
PI _ ^ - - 0.44

N 50

Since the probability of occurrence for each event is known, the exact result can be directly

obtained from the following calculations:

(i) The probability that crack fatigue growth does not occur = 1-0.2 × 0.15 -- 0.97

(ii) The probability that SCC does not occur = 1-0.4 = 0.6

(iii) The probability of failure = 1-0.97 x 0.6=0.418

Therefore, the probability of failure estimated using the Monte Carlo simulation is 5.26%

in error compared to the exact result of 0.418

The simulation procedure illustrated in this example is the simplest Monte Carlo method for

reliability problems; it may be the most widely used, but it is not the most efficient, especially

for complex systems.

4.1.2 Generation of Uniformly Distributed Random Numbers

To use the Monte Carlo simulation to solve a practical problem, it is necessary to generate

random numbers for different distributions. The random number of the [0,1] interval uniformly

distributed is the simplest and most important random number. Based on this random number,

the random number with arbitrary probability distributions can be obtained by means of various

sampling techniques. Therefore, the [0,1] interval uniformly distributed random number is the

basis for generating various distributed random numbers.

Assuming that x is the random variable over the interval [0,1], its density function is given

as

1, O<_x<_lf(x) = (4.1.2)
0, otherwise
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and its distribution function is given as

O, x < O,

F(x)= x, 0<x<:l (4.1.3)

1, x>l

The sampling sequence _1, P2, ..., _a, ... over the uniformly distributed random variable x

over the interval [0,1] is called the random number of the [0,1] interval uniformly distributed.

There are many methods available for generating the random numbers. The most common

practical approach is to employ a suitable "pseudo" random number generator (PRNG),

available on virtually all computers of numbers. They are "pseudo" since they use a formula

to generate a sequence of numbers. This sequence is reproducible and repeats normally after a

long cycle interval. The following recurrence formula is usually used to generate the "pseudo"

random number.

x_+l = 7x_(rnod M) (4.1.4a)

xa+l (4.1.4b)= --M--

where % M and xo are the preselected positive integers, which are determined by semi-

theoretical and semi-experientiai approaches.

Eq. (4.1.4) means that x,_+] is the remainder of the product 7xa dividing by M, the value

from xe+l dividing by M is the (7%+ 1) uniformly distributed random number, r_+l. Repeating

the process, a sequence of random numbers can be obtained.

For most practical purposes, a sequence of numbers generated by a suitable modern PRNG

is indistinguishable from a sequence production of a reproducible sequence, which can be an

advantage in certain problems. However, this reproducibility can be destroyed simply by

(randomly) changing the "seed number" required for most PRNGs. A simple solution is to

use the local time as a seed value.
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4.1.3 Generation of Random Variables

One of the key features in the Monte Carlo method is the generation of a series of values

of one or more random variables with specified probability distributions. The most commonly-

used generation method is the "inverse transform" method. Let Fx(xi) be the cumulative

function of random variable xi. By definition, the numerical value of Fx(x_) is a value in

the interval of [0,1]. Assuming that _i is the generated uniformly distributed random number

(0 < _ < 1), the inverse transform method is used to equate the _i to Fx(x_) as follows:

Fx(xi) = _i or _ xi = Fxl(_) (4.1.5)

This method can be applied to variables for which a cumulative distribution function has

been obtained from direct observation, or an analytic expression for the inverse cumulative

function, F-l(.), exists.

Example 4.2

Generate random variables with type-I extreme value distribution.

The probability density function of the type-I extreme value distribution is

1 x- _. _xp[_(__0_)]}Ix(x) = _0_xp{-(--ff-0_-

The cumulative distribution function is

Fx(x)= _p[-_v( _-_)]
to

where to is a scale parameter and $ is a location parameter.

Let _ be the random numbers from uniform distribution over the interval [0,1], and r/ be

the random variable with the specified distribution. Based on Eq. (4.1.5),

172



r
Uniformly
distributed

random numbers

Fx(X)

1:0.

_distribufion

/ function of random

/ _ari:bl:ealizalion or

al sampi I

fR (r) o x I

v

X

Fig. 4.1 Inverse transform method for generation of random variates

to

hence

71= 5 -- toln(--ln()

The inverse transform technique is shown in Fig. 4.1.

4.1.4 Direct Sampling (Crude Monte Carlo)

Eq. (4.1.1) gives the simplest Monte Carlo approach for reliability problems; it may be the

most widely used, but it is not the most efficient, especially in complex systems. A commonly-

used technique called crude Monte Carlo is introduced below.

As defined in Eq. (3.1.3) in Section 3.1, the failure region is the event that the limit state

g(X) < O, and the failure probability
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is rewritten as

=Pc,¢x)_<0j= f... fx(X)dX (4.1.6a)

f t

P! = J ... J I[g(X) <_ O]fx(X)dX (4.1.6b)

where I[.] is an "indicator function" which equals 1 if [.] is "true" and 0 if [.] is "false".

In comparison with (B.2), it can be seen that the expectation of the indicator random

variable for the failure event is just the probability that failure occurs. Hence

and its variance is

Pf = P[g(X) <_ 0] = E[I(X)] = #x = VPs (4.1.7)

Var[I(X)] = E[I(X) 2]- {Eli(X)]} 2

= Eli(X)]- {E[I(X)]} 2

= Z[I(X)]{1 - E[I(X)]}

= P](1 - P]) (4.1.s)

In order to evaluate P] by the Monte Carlo method, a sample value for basic variable xi

with a cumulative distribution Fx(xi) must be drawn. The "inverse transform" method given

in Section 4.1.3 can be used to obtain the random variate, in which a uniformly distributed

random number _i (0 _< (, < 1) is generated and is equated to Fx(xi), i.e., x_ = F[I(_).

Hence, independent random numbers _1,_2,...,_ are drawn from the density f_(xi) and the

estimate of P] is obtained:

1 fi

/5] = _ y_ I(_) (4.1.9)
i----1
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where _51representsthe crude Monte Carlo estimator of #pj

independentrandom numbers.

The varianceof the samplemeanis computedas

and _ is the number of the

ff

So the sample variance is given as

(4.1.10)

S_- if- 1 _=1 gi=l

Example 4.3

This example is taken from Ref. [1]. The limit state function is given as

g(X) = R- S = o

where R and S represent strength and stress, respectively.

distributed with the following means and standard deviations:

(4.1.11)

Both R and S are normally

#R = 135MPa, an = 15.0MPa, #s = IOOMPa, as = 12.0MPa

Estimate the failure probability using the crude Monde Carlo method.

For convenience, only 14 variates/_ and another 14 variates S are given below, but generally

more samples are needed. The procedure of the Monte Carlo simulation is shown in Table 4.2,

where

= _s + _s_-1(¢_)

are the random numbers given in Example 4.1. In Table 4.2, only one of the sample pairs (/_,

S) led to a failure (i.e. /_ _< S_).

The failure probability is
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1 _ 1 _ 0.07143-- : _ 14
i=l

Since both R and S are normally distributed, the exact result can be calculated as

pf = _)( 132-i00
v/152 ÷ 122) -- @(-1.666) = 0.04746

Obviously, more sampling isrequired.

4.1.5 Variance Reduction - Importance Sampling

Variance reduction techniques have a dual purpose: to reduce the length of a sample run

and to increase accuracy using the same number of runs.

In structural reliability analysis, where the probability of failure is generally relatively small,

the direct (crude) Monte Carlo simulation procedure becomes inefficient. For example, in many

pressure vessel technology problems, the probability of failure could be as small as 10 -5 or

10-1°; this implies that nearly a million simulation repetitions are required to predict this

behavior. If the limit state function g(X) represents the mathematical model for structural

simulation problems, the tail of the distribution of g(X) is the most important factor. The

simulated iteration must concentrate the sample points in this part in order to predict the risk

reliably and to increase the efficiency of the simulation by expediting execution and minimizing

computer storage requirements. Slow convergence is a severe penalty for the direct Monte

Carlo method and has led to several variance reduction techniques. The importance sampling

method, systematic sampling method, stratified sampling method, split sampling method, Latin

hypercube sampling method, conditional expectation method, and antithetic variates method

are some of the popular variance reduction techniques. Here, the importance sampling method

is briefly introduced as an illustration to interpret the concept of variance reduction techniques.

The importance sampling method is a modification of Monte Carlo simulation in which the

simulation is biased for greater efficiency. In importance sampling, the sampling is done only
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Table 4.2. The Monte Carlo Simulation Procedure for Example 4.3

Strength

0.1 -1.28 112.8'" 0.76

Stress

0.09

0.73

0.25

0.33

0.71 108.52 0

-1.34 111.9 0.80 0.84 111.08 0

0.61 159.2 0.95 1.64 119.68 0

-0.67 121.95 0.90 1.28 115.36 0

-0.44 125.4 0.91 1.34 116.08 0

0.71 142.65 0.17 -0.95 88.6 0

0.05 132.75 0.37 -0.33 96.04 0

-2.33 97.05 0.54 0.1 101.2 1

-0.39 126.15 0.20 -0.84 89.92 0

0.76

0.52

0.01

0.35

0.86 1.08 148.2 0.48 -0.05 99.4 0

0.34 -0.42 125.7 0.05 -1.64 60.32 0

0.67 0.44 138.6 0.64 0.36 104.32 0

0.35 -0.39 126.15 0.89 1.22 114.64 0

0.48 -0.05 131.25 0.47 -0.08 99.04 0
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in the tail of the distribution instead of spreading samples out evenly in order to ensure that

simulated failure occurs.

The failure probability of Eq. (4.1.6b) can be rewritten as

/. /. I[X]fx(X)
P+= Pb(X) < o]=J... J (4.1.12)- f$c(X) Jxt"" m""

where f_c(X) is the importance sampling probability density function. In comparison to Eq.

(A.3.2), the expectation of the indicator function in Eq. (4.1.12) can be written in the form

s(X)/x(X)
P] = E[ _ ]= #_,j (4.1.13)

Let x_,x_, ..., x_. denote random observations from the importance sampling function, f_ (.).

An unbiased estimate of PI is given by

^ 1 _-, I(x_)fx(x_)

P; = -_ '',=1 f;(x," *) (4.1.14)

The choice of f_(.) is quite important. If the density f_(.) has been chosen so that there

is an abundance of observations for which I(x;) = 1 and if the ratio fx(x;)/f;(x;) does not

change much with different values of x;, then Yar[fa]] will be much less than Yar[P]] (Eq.

4.1.10). Consequently, P] requires many fewer observations than PI (Eq. 4.1.9) to achieve the

same degree of precision.

The variance of/5] is given by

Var[P]] = -_{i"" J1[[I(x)f_(x)12f_(x)dx_.]_.(__ _ #2ps)

1
= __{J... J [I(z)]'[f.(z)]'dz_ 2p,}

f;(x)

The ideal choice of f;(x) is obtained using calculus.
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where A is a Lagrangian multiplier. This can be solved by using the calculus of variations. We

obtain

}I(x)f.(x)l
f (x) = f ... f ii(x)f: (x)ldx

Substituting into Eq. (4.1.15), it is easily found that

(4.1.17)

Var[P_] = l{[j ... f [i(x)fx(x)ldx] 2 _ #2pI}

If II(x)f_(x)[ is positive everywhere, the multiple integral is

Var[P]] = 0. In this case the optimal function f_(.) is

identical with

(4.1.18)

#pj and

f_(x)- I(x)f_(x) (4.1.19)
#Pj

It can be seen that a good choice of f_(.) can produce zero variance. Since/_PI is unknown,

this is impossible. However, it demonstrates that if more effort is put into obtaining a close

initial estimate of PI, then the Yar(P]) will be much less than the variance of/5] in Eq.(4.1.9).

Conversely, the variance can actually be increased using a very poor choice of f_(.). Thus, the

application of importance sampling is sometimes referred to as an art which must be used with

caution.

4.2 Response Surface Approximation

The multi-dimensional integration of Eq. (4.1.6a) may be carried out analytically for

a very limited number of cases. For most practical cases, the integration is impossible to

conduct analytically. Numerical methods, such as the Monte Carlo simulation, can generally be

performed to evaluate the integration, but it often turns out to be too computer time consuming.

Thus, relatively simple and accurate approximate techniques to evaluate the reliability are

needed.
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Chapter 3 has introduced someapproximate methods for the safety index calculations,

which is the basisof the failure probability calculationsgiven in this section. Even though the

safety index can be usedfor the measureof the structural safety,weare still more interested

in the reliability of structures, i.e., the failure probability.

Since the n-dimensional probability density function can be given as a multiplication of

n probability density functions for n random variables with standard normal distributions

in the standard normal distribution space, most approximate methods for failure probability

calculations are generated in the standard normal space so that the n-dimensional integration

can be easily computed. Once the MPP U* is located using the safety index algorithms given in

Chapter II, the approximate failure probability can be calculated by (i) approximating the limit

state surface g(U) using an approximate surface at the MPP; and (ii) evaluating the failure

probability defined by the approximating surface by exact or approximate means.

Different approximate response surfaces result in different methods of the failure probability

calculations. If the response surface is approached by a first-order approximation at the

MPP, the method is called first-order reliability method (FORM); if the response surface is

approached by a second-order approximation at the MPP, the method is called second-order

reliability method (SORM). Furthermore, if the response surface is approached by a higher-

order approximation at MPP, the method is called higher-order reliability method (HORM).

Hence, the response surface approximations play an important role in the failure probability

calculations.

In this section, several different approximations which are used in FORM, SORM and

HORM are introduced. Since the approximations are obtained in a new rotated space, the

orthogonal transformation from U-space to the new space is introduced first in Section 4.2.1.

The first-order and second-order Taylor approximations are given in Sections 4.2.2 and 4.2.3.

The adaptive nonlinear approximation is introduced in Section 4.2.4.
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4.2.10rthogonal Transformations

In most failure probability calculations, the integration of Eq. (4.1.6a) is performed in the

rotated new standard normal Y-space instead of U-space. In order to conduct the rotation from

the standard normal U-space to the Y-space, an orthogonal matrix H needs to be generated,

in which the nth row of H is the unit normal of the limit state function at the MPP, i.e.,

-VG(U*)/IVG(U*)[. To generate H, first, an initial matrix is selected as follows

-oa(v.)/av, -aa(U.)laV_ -aa(y')l_U.,
IVa(u )I IVa(U')l "'" IVa(u')l

0 1 ... 0

0 0 ... 0 (4.Zl)

..... • ... ...

0 0 ... 1

where the last n - 1 rows consist of zeros and unity on the diagonal. The Gram-Schmidt

algorithm [2] is used to orthogonalize the above matrix to obtain an orthogonal matrix. First,

let fl, f2, -.., fn denote the first, second, ..., nth row vector of the above matrix, respectively;

i.e.,

-oa(u')/ou, -oa(u*)/ou -oa(u*)/ou,, }r
k ={ IVG(U*)I ' Iva(U*)l '"" IVG(U*)I

Set

f2 = {0, 1,0,...,0} T

D1 = (fl,k) ½

1
611 : --

D1

_I --" ell fl
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D2= [(h, A) - I(f_,7,)12]_

(A,7_)
el2 --

D2

1

e2_ = D--7

72 = e1271+ e2272

and, in general,

Dk -- [(fk, fk)- I(A,'71)I 2- I(fk,72)12-, ..., -](fk, %-1)[2] ½

(A,71)
elk --

Dk

(A,72)
e2k --

Dk

(A,Tk-1)
ek-l,k -- Dk

1
ekk _ --

Dk

7k = elk'71 -Jr- e2kTa'q-, ..., ek-l,kTk-1 -1- ekk7k

where (f, f) and (f, 3') represent the scalar product (dot product) of two vectors. It can be

verified that the generated vectors 71, 72, ..., % are orthogonalized. The generated orthogonal

matrix Ho is

'/IT
Ho -- / "72"T (4.2.2)

"Tn T

In fact, in the orthogonal matrix of Eq. (4.2.2), the first row is -VG(U*)/[VG(U*)I due

to D1 = 1. To satisfy that the nth row of H is -VG(U')/]VG(U')], the first row of the

orthogonal matrix is moved to the last row. This rearranged matrix is also an orthogonalized
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Fig. 42. First-order approximation of the response surface in Y-space

matrix and satisfies that the nth row of H equals -VG(U*)/IVG(U*)I, so it is defined as H

matrix and is given as

I 72 T

73T

H= !

_/n T

\ V_ T /

4.2.2 First-order Approximation of Response Surfaces

(4.2.3)

Assuming the most probable failure point (MPP) in U-space as U* = {u_, u_, ..., u_,) T, the

linear approximation of the response surface g(U) = 0 is given by the first-order Taylor series
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expansion at the MPP,

_(u) _ g(u*) + vg(u*)(u - u') = 0 (4.2.4)

In this equation, g(U*) equals 0 because U* is on the response surface. Divided by [Vg(U*)I,

Eq. (4.2.4) is rewritten as

From Eq. (3.3.25), we have

_(U) _ Vg(U*) (U - U*) (4.2.5)
IVg(U')l

Vg(U')U"
I

IVg(U')l

Substituting this equation into Eq. (4.2.5), we obtain

/3 (4.2.6)

vg(u*)
_(v) _ iVg(U.)lU + _ = o (4.2.7)

By a rotation of U into a new set of mutually independent standard normal random variables

Y using the orthogonal matrix H given in Eq. (4.2.3),

Y = HU (4.2.8)

and the approximate response surface given in Eq. (4.2.7) becomes

or

_(U) _ -y. +/3 = 0 (4.2.9a)

y, =/3 (4.2.9b)

Eq. (4.2.9b) is the first-order approximation of the response surface in the rotated standard

normal space (denoted as Y-space), as shown in Figure 4.2. If the limit state functions of the

practical problems are linear or close to linear, this approximation closely or exactly represents
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the responsesurface.Otherwise,the truncation errorsfrom the first-order Taylor approximation

might be large and more accurateapproximationswould be needed.

4.2.3 Second-order Approximation of Response Surfaces

The second-order approximation of the response surface g(U) = 0 is given by the second-

order Taylor series expansion at the MPP,

1

,j(U) _ g(U*) + Vg(U')(U - U*) + 2 (U - u*)TV2 g(U*)(U -- U*) (4.2.10)

where V2g(U*) represents the symmetric matrix of the second derivatives of the failure function:

v2g(u-),j _ a2g(u*)
cOuiOuj (4.2.11)

Dividing by IVg(U*)I and considering g(U*)=O, we obtain

where

and

O(u) .__r (u - u*) + _(u - u') r B(U - g*) (4.2.12a)

vg(u')
a = iVg(U.)I (4.2.12b)

B = V2g(U')
IVg(U*)l (4.2.12c)

Physically, the following transformations are the coordinate rotations to make the y,_ axis

coincide with the fl vector, as shown in Figure 4.3. Substituting Eq. (4.2.8) into Eq. (4.2.12)

and replacing the first term by Eq.(4.2.9a), the U-space approximate response surface is rotated

as

{_(Y) ,._ -y,_ + fl + 2(H-1Y - H-1y.)TB(H-Iy _ H-Iy *) (4.2.13)
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Fig. 4.3 Second-order approximation of the response surface in Y-space

where Y" is the Y-space MPP (Y* = {0, 0, ...,/3} T) corresponding to the U-space MPP U*. In

Y-space, y_ axis is in coincidence with the/3 vector.

Since the H matrix is an orthogonal matrix,

H-_ = H T

Substituting this equation into Eq. (4.2.13), we have

where

_(Y) ,_ -y,_ + t3 + l (y _ y.)T HBHT(y _ y.)

(y _ r.)r = (w,y:, ...,y, - Z)r

(4.2.14)

(4.2.15)

(4.2.16)
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By a series of orthogonal transformations, /-/1, /-/2, ...Hm, for the first n - 1 variables,

= {Yl, Y2, ..., y,_-l} T, i.e.,

]/' = HIH2, ...HmY (4.2.17)

Quantities associated with n - 1 variables are denoted with a bar. Finally, the first (n - 1) x

(n - 1) order matrix of HBH T will become a diagonal matrix

and Eq. (4.2.15) becomes

R/ H T =

_;1 0 ... 0

0 _;_ ... 0

0 0 ... 0

.... o .......

0 0 ... _;,_-1

(4.2.1s)

1 n--I t2

y,,= + { Z (4.2.19)
i---1

In fact, the above procedure of finding the diagonal matrix can be treated as an eigenvalue

problem. So _i are the eigenvalues of matrix/_/_/_T whose elements are given by

aij = (f-IBHT)ij, i,j = 1,2,...,n- 1 (4.2.20)

where aij represents the curvature of the response surface at the MPP.

Eq. (4.2.19) is the second-order approximation of the response surface in the rotated

standard normal space. The major computational cost is in computing the second derivatives B

of the limit state function at MPP. The exact second-order derivatives of g(U) require additional

n(n + 1)/2 function calls for a finite difference scheme. For problems having a large number

of random variables, this calculation is extremely computer intensive. From this procedure,

it is clear that one has to increase the computational efficiency in calculating the curvature

matrix and second-order function derivatives. Then it enables an accelerated and cost-effective
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Fig. 4.4 Fitting of paraboloid in Y-space

procedure to perform the second-order probability analysis, particularly when finite-element-

based structural analysis tools axe used. In the next section, two second-order approximations,

which were presented by Wang and Grandhi [3] and by Der Kiureghian, et aI [4], with no

computational cost of the second-order derivatives calculations are introduced.

4.2.4 Second-order Approximation of Response Surfaces with Approximate Curvature

In Ref. [3], the second-order derivatives of the limit state function are approximately

calculated by using an approximate performance function. This approximate performance

function was constructed during the safety index search process, which is given in Eq. (3.3.74).

The approximate second-derivatives are given as
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*)
cgu_c3uj

" (u,
= (r-1)E(u,,_+_ _ .+

i

m

cri

= 0, i # j (4.2.21)

By considering Eq. (4.2.12c) and the orthogonal transformation of Eq. (4.2.8), the curvature

_i can be approximately determined from Eq. (4.2.20). Since the nonlinear function given in

Eq. (3.3.52) is fairly accurate around the MPP when convergence is realized, the calculation of

second-order derivatives using this nonlinear approximation would give improved accuracy in

failure probability compared to the first-order methods. Also, this procedure avoids the exact

second-order derivatives computations of the limit state function at the MPP.

In Ref. [4], the approximating paraboloid is defined by fitting a set of discrete points selected

on the limit state surface at prescribed distances from the MPP. These fitting points, 2(n - 1)

in number, are selected along the coordinate axes in the rotated space in the manner described

in Figure 4.4. Along each axis y_, i = 1, 2, ..., n - 1, two points are selected with the coordinates

(-kfl, rl__ ) and (kfl, r/+_), where the subscripts -i and +i refer to the negative and positive

directions on the y_ axis, respectively, and k is a preselected coefficient. The ordinates r/+i are

obtained as solutions of yn in g(Y) = 0 with Y = (0, ..., -4-kfl, 0, ..., yn). A simple algorithm for

finding these solutions is described in the Appendix C.

This method is expected to provide computational savings when the number of variables

is very large. In fact, if finding the ordinates r/+i needs m iterations, this procedure requires

2 x n x m exact g-function calculations. If n is large and m is about 10 to 20, then this

procedure may not be efficient even though it might take less computational time than the

original second-order approximation. An advantage of this method is that it can be used for

problems with an inflection point at Y* since two semiparabolas are used.

In all the mentioned second-order approximations, if the limit state functions of the practical
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problemsare quadratic, linear, or close to quadratic or linear, the approximation would fit the

response surface well. However, in some cases, the limit state functions may be highly nonlinear

or have an inflection point at the MPP (see Figure 4.5 in the next section). For these cases, the

second-order approximation might result in larger errors. Hence, a more accurate and adaptive

approximation is given in the next section, which was presented by Wang and Grandhi in [5].

4.2.5 Higher-order approximation of response surfaces

As discussed in the previous section, in some cases, the second-order approximation can

not yield a good representation for the response surface because the curvatures at the MPP

do not provide a realistic picture of the surface in the neighborhood of the MPP. For example,

when the MPP is an inflection point, as shown in Figure 4.5a or when the limit state surface

is highly nonlinear, as shown in Figure 4.5b, the curvatures are zero and the second-order

approximate surface reduces to the tangent plane, thus, providing no improvement over the

first-order approximation.

In order to obtain the higher-order approximation of the response surface, first, we need to

rotate the standard normal U-space to the rotated standard normal Y-space. The procedure

of the rotation transformation is given in Eq. (4.2.8). In Y-space, the random variables Y

are also independent, standard and normally distributed. The y= axis is in coincidence with

the /3 vector. In order to obtain a more accurate approximation in Y-space, an adaptive

nonlinear function is constructed based on two points selected on the limit state surface with

the coordinates (-k/3, -k/3, .... , r/_), and (k_,k/3, .... ,r/b), where r/_ and r/b are the y,_ values

corresponding to the negative and positive directions of the yi (i = 1, 2, ..., n - 1), respectively.

k is a preselected coefficient which can be selected from 0.1 to 1.0. In this work, k is selected as

0.1. The ordinates r/_ and r/b are obtained as the solutions of y,_ in g(Y) = 0 with Y_ = (-k/3,

-k/3, ... -k/3, r/_), and Yb = (k/3, k/3, ... k/3, rib). A simple algorithm for finding r/_ and rlb is

given in Appendix C. Unlike in Ref. [4], the iterations for finding the coordinates r/_ and r/b are
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performed on the approximate performance function instead of the exact analyses, which was

constructed for computing the safety index/3. This nonlinear approximation is fairly accurate

in the neighborhood of the MPP when the convergence for/3 is realized. These approximations

provide tremendous computational savings when the finite element methods are used for the

analyses.

Based on these two points selected on the limit state surface, a two-point adaptive nonlinear

approximation is established. The approximation is similar to the one used in finding the MPP

in Ref. [6] but the nonlinear index is an integer instead of a real number. The errors from the

integer index are eliminated by adding the weight coefficients to each term of the approximation.

The approximation is required to pass through two base points and the MPP. The details of the

approximation based on Y_ and Yb are given as follows. The intervening variables are defined

as

si = y? i = 1, 2, ..., n - 1 (4.2.22)

where m is the nonlinearity index, which can be a positive or negative. Since the random

variables yi (i = 1, 2, ..., n - 1) vary from -o¢ to +oo in Y-space, the nonlinearity index m is

defined as an integer to avoid numerical problems in Eq. (4.2.22) when yi is negative with a

real index. The approximate function z)n is obtained by expanding the function in terms of the

intervening variables given in Eq. (4.2.22) at 1_ = (-k/3,-k/3, ...,-k/3). The weight coefficients

are added to each term of the approximation to improve the accuracy since the nonlinearity

index is an integer. The approximation is written as

Yn(Y) = Y"(Y_) + ml _-1__,tiyil,-_m Oy,,(Y_)oyi(y_ - Yi,_) (4.2.23a)
i----1

where _(12) and yn(Y) represent the approximate and exact functions, respectively, and 0y,(_,)
Oy,

can be computed by the differential method of implicit functions as
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oy_(?o) _ og(_) /og(yo)
Oyi - Oyi " -_y_ (4.2.23b)

where Y" - {ya,y_,...,y__l} T and Y - {y_,y_,...,yn} T. The function value at the MPP, i.e.

Y*(O, O, ..., #), is

m E t-1-m 0y,_(_'=)(-Yi,_) (4"2"24/= -- iYi,a Oyi
i--1

By substituting Eq. (4.2.24) into Eq. (4.2.23a), the approximation becomes

1 n-1 m t175, \

v-_ t a-m°Y,_ _) m (4.2.25)9"0>)= 13+ _ _ _Y_'° 0u_ u_

Eq. (4.2.25) has n unknown constants, m and ti (i = 1, 2, ..., n - 1). They can be evaluated

by using the following n equations, that is, by letting the approximate function value and the

derivatives at _ equal their corresponding exact values at this point,

= t,(Y,,___e_)_-" ov°(?o)
Oyi Yi,b Oyi '

i -- 1,2,...,n-- 1 (4.2.26a)

1 n--I '_ [Yt \
v', t x-,_ aY,_( =) ,_

_t,_(_) = t3 + m 2.., iYi,,, O, Y,,b (4.2.26b)
i=1 oi

where ti (i = 1,2, ..., n - 1) is a real number, which gives additional degrees of freedom for

improving the approximation accuracy since the nonlinear index, m, is an integer. If they are

equal to 1, Eq. (4.2.23) is a Taylor series expansion. Eq. (4.2.26) has n unknown constants, and

they can be determined by using a simple adaptive search technique given in Section 3.3.3.6.

The approximate function values at Y=, Yb and MPP, and derivatives at Yb are equal to their

respective exact values. The function is a paraboloid approximation when m is equal to 2. The

approximate function can be used for the problems shown in Figs. 4.5a and 4.5b where the

paxaboloid approximations can't provide any improvement over the FORM. This approximation
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is simple to implement with less computation even when the number of variables is large and

can also be used for highly nonlinear problems.

The approximation given in Eq. (4.2.25) is rewritten as

where

n-1

_,_(Y) = _ + _ a,y'_ (4.2.27a)
i=1

ai = ayn(: o)
m cgyi (4.2.27b)

4.3 First Order Reliability Method (FORM)

After approximating the response surface, the failure probability can be calculated by

integrating Eq.(4.1.6a). In the first order reliability method, the limit state surface is

approximated by the tangent plane at the MPP given in Eq. (4.2.9). Therefore, the approximate

failure region _t is defined as

= {YlY,_ - _ > 0} (4.3.1)

Since the random variables in Y-space are independent, standard and normally distributed, the

n-dimensionai standardized normal probability density function can be written as

v(yl,y2,...,y,) 1 1 2

- (2_) _ _P[-2(Y_ + Y_ + ... + Y_)]

= (4.3.2)

where ¢(yi) is the probability density function for the ith random variable with a standard

normal distribution.

The failure probability given in Eq. (4.1.6a) can be computed from a formulation in Y-space.
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Ps

Because

and

= ... Yl ... Y,_-I y,_ y,_dy,_-l...dyl
oO O0

V/$/_'= 1- ... ¢(Yl)...¢(Yn-1) ¢(yn)dy,_dy,__,...dy_
O0 O0 Oo

j'/¢(w)dw = ¢(fl)
O0

f_ ¢(yi)dyi = 1, i = 1, 2, ..., n- 1
OO

Substituting these two equations into Eq. (4.3.3), we obtain

(4.3.3)

(4.3.4)

(4.3.5)

PI = 1 - ¢(fl) = ¢(-fl) (4.3.6)

Eq. (4.3.6) provides the exact estimate of the probability of failure if the limit state function

is linear and the random variables are normal distributions. Since the approximation to the

response surface is the first-order Taylor approximation, the method is called the first-order

reliability method (FORM). FORM usually works well when the limit-state surface has only one

minimal distance point and the function is nearly linear in the neighborhood of the design point.

However, if the failure surface has large curvatures (high nonlinearity), the failure probability

estimated using the safety index fl by FORM may give unreasonable and inaccurate results [7]

and more accurate approximate methods have to be applied.

Example 4.5

This example was given in Example 3.12 of Chapter 2. The performance function is

_(Xl, Z2)"-- X 4 -_- 2X 4 -- 20

where xl and x2 are the random variables with normal distribution (mean xl = x2 = 10.0,

standard deviation al = a2 = 5.0). The safety index fl was obtained from Example 3.12, i.e.

fl = 2.3654. Using Eq. (4.3.6) (FORM), the failure probabilhy is computed as

195



PI - @(-_) = @(-2.3654) = 0.009

The failureprobabilityusing the Monte Carlo method (sample size=f00,000, seed=5000)

is0.001950. Compared with thisresult,the first-orderreliabilitymethod isinaccurate for this

highly nonlinear problem. Therefore,more accurate approximate methods are needed.

4.4 Second Order Reliability Method (SORM)

As mentioned in the previous section, if the failure surface has large curvatures, i.e., high

nonlinearity, the failure probability estimated using the safety index B by FORM may give

unreasonable and inaccurate results (Figure 4.6) [7]. For the linear limit state bb, containing

P1 as design point, the failure probability for normal variables is given exactly by PI = ¢(-8).

However, the point P1 is also the design point for nonlinear limit state functions aa and cc.

In terms of first-order reliability theory, each of these limit states has an identical value of _,

and hence an identical nominal failure probability P! = _(-t3); however it is quite clear from

Figure 4.6 that the actual probability contents of the respective failure regions are not identical.

Similarly, the limit state dd represents probably a lower failure probability still; yet its safety

margin _1 is less than ft. Evidently _ as defined so far lacks a sense of "comparativeness" or an

"ordering property" with respect to the implied probability content for nonlinear limit states.

A further point of interest is that no limitation has been placed on the direction of/3 in

U-space so that, for some other checking point P2, the probability content for the linear limit

state ee should be identical with that implied by bb when both have the same distance fl from

the origin.

In the above cases, more accurate approximate methods have to be applied. Breitung

[8], Wvedt [9][10], Hohenbichler and aackwitz [11], goyluoglu and Nielsen [12], and Cai and

Elishakoff [13] have developed second-order reliability methods (SORM) using the second-order

approximation given in Eq. (4.2.19) to replace the original failure surfaces. Wang and Grandhi
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[3] and Der Kiureghian, et al [4] calculated second-order failure probabilities using approximate

curvatures to avoid exact second-order derivatives calculations of the limit state surface.

Breitung's and Tvedt's formulations are introduced in Sections 4.4.1 and 4.4.2, respectively.

Wang and Grandhi's SORM with approximate curvatures calculations is given in Section 4.4.3.

4.4.1 Breitung's Formulation

To explain the Breitung formulation, first, a Laplace method for the asymptotic

approximation of multidimensional integrals is needed. Defining

I(_3) - _(r)<o exp( -jo_lYl_ )dY2 (4.3.z)
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where I(fl) is an integral over a fixed domain whose integrand is an exponential function

depending linearly on the parameter f12. An extensive study of the asymptotic behavior for/32

is described in Ref.[14], Chapt. 8. Using the results given there, the asymptotic form of 1(/3)

is (details see Appendix D)

I(]3) _ (2_r)("-l)/2exp(- fl-("+l)IJ[ -1/2, /3 --, oc (4.3.8)

where J is a quantity independent of fi depending only on the first and second derivatives of

the failure surface at the MPP, which is defined in Eq. (D.3) in Appendix D.

In the case of independent standard normal random variables, the joint probability density

function (PDF) is given by Eq. (4.3.2), i.e.,

Ps = (2_r)-"/: _(v)<oeXP(- [-_)dU

Substituting (x_, x2, ..., x_) --+ (ya, y2, .-., y,) with y; = fl-iui:

(4.3.9)

Ps IYI2= exp(-fl --_)dY

Substituting Eq. (4.3.8) into this equation, we obtain

(4.3.10)

pf ,_ (2_r)-l/2fl-lexp( - j[-1/2, fl --+ o¢ (4.3.11)

Since the failure surface is approximated by the quadratic Taylor series expansion at the

MPP given in Eq. (4.2.12), IjI can be computed based on Eq. (D.9) given in Appendix D,

p n n--1

[J] = _ [Ji[ = _ l'I (1 + _:ijfl) (4.3.12)
i=I i=I j=l

where p is the number of points on g(U) = 0 with the shortest distance fl from the origin to

the failure surface, and gij is the main curvature of the failure surface at the MPP. If there is
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only one MPP on the surface,by substituting this equation into Eq. (4.3.11)and considering

Mill's ratio

PI can be computed

¢(-Y) _ (2_r)-'/_y -_exp(-Y_/2) (4.3.13)

n-1

P] _ ¢(-_) ]"I (1 + aj_)-l/2 (4.3.14)
j----1

Since Eq. (4.3.14)is an analytical equation, it is easy to implement the Breitung algorithm.

The main steps of Breitung's formulation include:

1). Conducting the safety index search and locating the MPP, U*;

2). Computing the second-order derivatives of the limit state surface at U* and forming the

B matrix given in Eq. (4.2.12c);

3). Calculating the orthogonal matrix H based on the procedure given in Section 4.2.1;

4). Computing the main curvatures aj of the failure surface at the MPP using Eq. (4.2.20);

5). Computing the failure probability Pf using Eq. (4.3.14).

Example 4.6

Compute the failure probability Pf using the Breitung method (Eq. 4.3.14) for Example

4.5.

1). Compute the safety index and MPP, U*;

The safety index _ was calculated as fl = 2.3654 from Example 3.12. The MPP was located

at U*(-1.6368,-1.7077)(in X-space, X*(1.8162, 1.4613)).

2). Compute the second-order derivatives of the limit state surface at U* and form the B

matrix given in Eq. (4.2.12c);

Og egg 4x_al 4 x 1.81623 x 5 119.8148
-_u l = -_z l a l = = =

Og Og 4x3a2 8 x 1.4613 a x 5 124.8218
_U 2 -- G_X2 (:71 --- _. _.
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O2g - 12x_ = 12 x 1.81622 = 39.583
0x}

O2g - 24x_ = 24 x 1.46132 = 51.2495
Oz_

02g 02g o.2 52
cgu'-"-_= 6qx---'_1 = 39.583 x = 989.5592

O2g O2g as 52
_u_ - _ 2 = 51.2495 × = 1281.2632

/ Og )2 Og _2Ivg(v')l = _/(b-_ + (b-_j

= j(119.8148)2+ (124.8218)2

= 173.0205

B

v_g(u")
Ivg(u*)l

[Vg(U*)l 989.5592 0 )0 1281.2632

3). Calculate the orthogonal matrix H based on the procedure given in Section 4.2.1;

H=(72 T) = (-0.7214 0.6925)
_'1 T -0.6924 -0.7214

4). Compute the main curvatures gi by solving the eigenvalues of HBHT;

HBHT=( 6.5278 -0.8423 /
-0.8423 6.5968 ]

An eigenvalue of the above matrix is solved as _1 = 6.5278, so the main curvature of the

failure surface at the MPP is 6.5278.

5). Compute the failure probability Pf using the Breitung formula
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Pj
n-1

= _(-#) H(I + _j#)-i/2
j=i

= ¢(-2.3654)(1 + 6.5278 x 2.3654) -1/2

- 9.0040 x 10 -_ x 0.2466

= 0.00222059

Compared with the FORM's result (Pf - 0.009004), Breitung's method is closer to the

Monte Carlo result (Pf = 0.001950). It generally provides better results than FORM due to

the second-order approximation. However, this method is not valid for _aj < -1 and does not

work well in the case of negative curvatures.

4.4.2 Tvedt's Formulation

Based on the second-order approximation of the failure surface given in Eq. (4.2.19), the

approximate failure region 12 is defined as

1

_I = {YIY,, - (8 +

n-I

> o} (4.3.15)
,=1

The failure probability given in Eq. (4.1.6a) can be computed from a formulation in Y-space.

FFPf = 1 - ... ¢(Yi)...¢(Yn-1) / , _.=,1 ,2 ¢(y,_)dy,_dyn-l...dyl (4.3.16)
¢_ oo J#+_ 2_, '=_vi

i=1

Tvedt has derived a three-term approximation to this equation by a power series expansion

1 n--1 p2

in terms of 7 i_1 _iY_ , ignoring terms of order higher than two. The resultant approximation

for Pj is

n-1

A, = ¢(-fl) 11 (I + fl_)-i/2
i=I

n--1 n--1

A2 = [A?¢(-#)- ¢(#)]- {11 (i + _i) -I/2 - I"I (I + (/9 + 1)r_{) -1/2}
i= 1 i= 1

(4.3.17a)

(4.3.17b)
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n-1 n-1

A3 = (fl+ 1)[fl_(-fl)- ¢(fl)].{l-I(i+ _xi)-I/2- Re{ l_ (i + (/3+ l)_i)-I12}
i=1 i=l

p! = Aa + A2 + A3

The first term, Aa is the Breitung formula of Eq. (4.3.14).

(4.3.17c)

(4.3.17d)

Re[.] denotes the real part.

This method has been found to give very good approximations in most cases. The asymptotic

behavior of the three terms can be compared in the asymptotic sense used in Eq. (4.3.14). It

may be shown that the ratio of the second term to the first term is

A2 1 _-I /3xj

A---_"" 2/3----2.i_..11 - _ x j '

Similarly, the ratio of the third to the first term is

/3---+oo (4.3.18)

A3 3 n--1 /3/_J )2 1 n-1 n-1 /32_jKr n....
Since Eq. (4.3.19) is an analytical equation, it is easy to implement the algorithm. The

main steps of the Tvedt's formulation are the same as Breitung's except step (5), i.e., the

failure probability P] is calculated using Eq. (4.3.17).

Example 4.7

Compute the failure probability Pf using the Tvedt method (Eq. 4.3.17) for Example 4.5.

The first four steps are the same as Example 4.6, i.e.,

1). Compute the safety index and MPP, U*;

The safety index/3 was calculated as/3 = 2.3654 from Example 3.12. The MPP was located

at U*(- 1.6368, - 1.7077) (in X-space, X*(1.8162, 1.4613)).

2). Compute the second-order derivatives of the limit state surface at U* and form the B

matrix given in Eq. (4.2.12c);

Og Og 4z3al 4 x 1.81623 x 5 119.8148
0Xl °1= = =
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v0g

Ox2 al = 4x_a2 = 8 × 1.46133 x 5 = 124.8218

(:32----_g- 12x_ = 12 x 1.81622 = 39.583
Ox_-

(:32g = 24x_ = 24 × 1.46132 = 51.2495
0x_

c92g 02g a2 52
- Ox-'--_1 = 39.583 × = 989.5592

2
02g 0 g _ 52
Ou"'-_= Ox"--'_a2 = 51.2495 × = 1281.2632

! Og)2 Og 2Ivg(v')l = +

= I(119.8148)2 + (124.8218) 2

= 173.0205

B
v:g(u ")
IVg(U')l

_ 1 ( 989.5592 0 )[Vg(U*)[ 0 1281.2632

3). Calculate the orthogonal matrix H based on the procedure given in Section 4.2.1;

00 %/71 \-0.6924 -0.7214]

4). Compute the main curvatures _j by solving the eigenvalues of HBHT;

HBHT = ( 6.5278 -0.8423)-0.8423 6.5968

An eigenvalue of the above matrix is solved as _1 = 6.5278, so the main curvature of the

failure surface at the MPP is 6.5278.

5). Compute the failure probability Pf using the Tvedt formula (Eq. 4.3.17)
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The first term of the Tvedt formula is the sameasBreitung's method, so

A1 - 0.00222059

A2

n-I n--I

= [/3¢(-/3) - ¢(/31]. { H (1 +/3xi) -1/2 - 1-I (1 + (/3 + 1)xi) -1/2}
i=1 i=1

= [2.3654 x ¢(-2.3654) - ¢(2.3654)]

•{(1 + 2.3654 x 6.5278) -1/2 - (1 + (2.3654 + 1) x 6.5278) -1/2}

= 2.2205 x 10-3

A3

n--1 n--1

= (13 + 1)[/3_(-/3) - ¢(/3)]- {1"_ (1 + #tci) -1/2 - Re[l- I (1 + (# + 1)_/)-1/21}
i=1 i=1

= (2.3654 + 1)[2.3654 x ¢(-2.3654 / - ¢(2.3654)]

•{(1 + 2.3654 x 6.5278) -x/2 - Re[(1 + (2.3654 + 1) x 6.5278)-1/2]}

= -1.3297 × 10 -4

Pj - Aa + As + A3 = 0.00222059 + 2.2205 x 10-3 - 1.3297 x 10-4 = 0.002087

Compared to the FORM result (Pf = 0.009004) and the Breitung result (Pf = 0.00222059),

Tvedt's method is closer to the Monte Carlo (PI = 0.001950).

Like Breitung's algorithm, Tvedt's method is also invalid for/3xj < -1 and does not work

well in the case of negative curvatures.

4.4.3 SORM with Approximate Curvatures

In this method, Breitung's and Tvedt's formulas are used to perform the failure probability

calculations. However, the main curvatures are approximately calculated by using the nonlinear

approximation constructed during the safety index search of this work.
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The main stepsof the SORM havingapproximate curvaturesaresummarizedasfollows for

a completefailure probability analysis.

1). Conducting the safetyindex searchand locating the MPP, U*;

2). Computing the second-order derivatives of the limit state surface at U* using Eq.

(4.2.21) and forming the B matrix given in Eq. (4.2.12c);

3). Calculating the orthogonal matrix H based on the procedure given in Section 4.2.1;

4). Computing the approximate curvatures nj of the failure surface at the MPP using

Eq.(4.2.20);

5). Computing the failure probability P/using Breitung's formula of Eq. (4.3.14) or Tvedt's

formula of Eq. (4.3.17).

A significant reduction in computer effort comes from the use of approximate functions in

step 2 for the second-order derivatives because exact analysis is avoided. Therefore this method

is particularly suitable for problems having implicit performance functions needing large scale

finite element models for structural analysis.

Example 4.8

Compute the failure probability PI using Wang and Grandhi's SORM for Example 4.5.

1). Compute the safety index and the MPP, U*;

The safety index/3 was calculated as/3 = 2.3654 from Example 3.12. The MPP was located

at U*(-1.6368,-1.7077) (in X-space, X*(1.8162, 1.4613)).

2). Compute approximate second-order derivatives at U* using Eq. (4.2.21) and form the

B matrix given in Eq. (4.2.12c);

Og Og 4x_rl 4 × 1.81623 × 5 119.8148
= = =

og og
- --_rx = 4x_r_ = 8 × 1.46133 × 5 = 124.8218

Ou_ Ox_
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IVg(U*)l
¥ 1 2

= _/(119.8148) 2 + (124.8218) 2

= 173.0205

B
v2g(u*)
IVg(U')l

1 ( 989.5592 0 )IVg(U*)l 0 1281.2631

3). Calculate the orthogonal matrix H based on the procedure given in Section 4.2.1;

71 \-0.6924 -0.7214

4). Compute the main curvatures nj by solving the eigenvalues of HBHT;

HBH T = ( 6.5278 -0.8423)-0.8423 6.5968

5). Compute the failure probability PI using the Tvedt formula (Eq. 4.3.17)

The first term of the Tvedt formula is the same as Breitung's method, so

A1 = 0.00222059

A2

n--1 n--I

= [#<I)(-#)--¢(#)1. {II(l + fl_,)-i/2_ II(l + (# + i)_,) -I/2}
i=1 i=1

---- [2.3654 × O(-2.3654) - ¢(2.3654)]

-{(1 + 2.3654 x 6.5278) -1/2 - (1 + (2.3654 + 1) × 6.5278) -1/2 }

= 2.2206 x 10 -3
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A3

n--I n-I

= (_ + 1)[_¢(-_) - ¢(_)1•{1-i(1+ _;)-1/_ _ n4II (1+ (8 + 1)_)-1/2]}
i=1 i=1

= (2.3654 + 1)[2.3654 x 0(-2.3654) - ¢(2.3654)]

•{(1 + 2.3654 x 6.5278) -1/2 - Re[(1 + (2.3654 + 1) × 6.5278)-a/2]}

-- -1.3298 × 10 -4

Pf = A1 + A2 + A3 = 0.00222059 + 2.2206 x 10 -3 - 1.3298 x 10 -4 = 0.002088

This result is very close to the Tvedt's result •(Pf = 0.002087) with the exact second-order

gradients of the limit state surface. It means that the approximation given in Eq. (4.2.21)

accurately represents the real failure surface in this example. Since this method doesn't require

any exact second-order gradient calculations, it can be used for problems where the second-order

gradients are expensive or impossible to calculate.

4.5 Higher Order Reliability Method (HORM)

Based on the higher-order approximation of the failure surface given in Eq. (4.2.27), the

approximate failure region ft is defined as

n--1

12 = {YIY,_ - (t3 + _ aiy'_) > O} (4.3.20)
i=I

Since the random variables in Y-space are independent, standard and normally distributed, the

n-dimensional standardized normal probability density function can be written as

• (yl,u_,.. ,y,)
i 1 2

= exp[-_(yl + y_ + ... + y_)]
(2_-)_ Z

= ¢(y_)¢(y_)...¢(y_) (4.3.21)

where ¢(yi) is the probability density function for the ith random variable with a standard

normal distribution.
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The failure probability given in Eq. (4.1.6a) can be computed from a formulation in Y-space.

P_ f_* f_* ¢()¢( )£_ ¢()= ... Yx ... Y,_-I ,,-1 y,_ dy,_dy,_-l...dyl

i.=1

= 1 - ... Yl ... Y,_-I y,_ dy,_dy,_-x...dya
0,0 OC, --

(4.3.22)

Dividing the innermost integration of the second term in Eq. (4.3.22) over the interval (-¢x_,
n--I n--I

a m/3 + E aiy'_] into integrals over (-oo, fl] and (/3,/3 + E iYi ], Eq. (4.3.22) becomes
i=1 i=1

Pj

n--1

= 1 - ¢(/3) - ... ¢(Yl)...¢(Y,-a) ¢(y,_)dy,_dyn-1...dyl
oo

/5?= ¢(-_)- ... ¢(ya)...¢(y,-1)[¢(fl + V) - ¢03)]dyn_a...dyl
¢)o oo

(4.3.23)

where
n--1

v = F_,a,y? (4.3.24)
i=1

The sign of V depends on the sign of ai and y_. The failure probability calculations for the

following five cases are described below.

4.5.1 Case 1 - All a; are positive and m is even

If all al are positive and m is even, V is positive. Let f(V) represent the integral function

given in Eq. (4.3.23), that is

f(V) = ¢(/3 + V)- ¢(/3)

The following expansion function of f(V) given in Ref. [12] is used, which is

(4.3.25)

¢(/3+ V)--¢(/3) _--- (1-¢(/3)){]-exp(-V)(1-_-cI,IVJvc2,1V2-_c3,1V3-_...-_CN,1VN)} (4.3.26)

C0,1
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whereN is the number of the expansion terms. This function fulfills

f(0)-0 (4.3.27a)

lim f(V) = 1 - (I)(fl) (4.3.27b)
V-_oo

Based on the expansion function of Eq. (4.3.26), the failure probability is computed as

&
_-, _-, Hk(1) _-i Hk(2) _-I

¢(-_)--,l'I H}°){ 1 +cla _ H(O) + c2,1[_--_ Hk(O) + Z(2_)-v- :=1 k=l k=l _=1

k=l k=l l=l,l#k k=l l=l,l#k

,_-i r4(1) r_r0)

o) o)l

n--1

E ]_]'(1) _[$'(1) TJ'(1)
**k "ul .L.*p

p=l ,p#l,p#k

(4.3.28)

where

H (°) /_'_ _ : _= e -_ -_, 1_ dy
oo

ayme-_y-z_yv dy
oo

---_ f__o ly2 a ra
H (2) a2y2me-_ -_-KTa_dy

/__0 1 2 a ..m
H (3) = a3y3me -_y -co, l_ dy

oo

(4.3.29a)

(4.3.29b)

(4:3.29c)

(4.3.29d)

By using the ten-term Hermite approximate integral formula, the integration of Eq. (4.3.29)

can be computed as
10 1 ;2 a Zm

H (o)= _ Aie_,_ . e-F'' -_a"
i=1

10 1 2 a rn

-7_i - _-7(,H O) = _ Aie _ • a_'_. e
i=1

10 . a 2fi2rn _Lf.__ a....___mH (2)=_Aie _ _, .e 2-, _0,1",
i=1

(4.3.30a)

(4.3.30b)

(4.3.30c)

lO .H (a)=_Aie e_ .. .e =" ¢o,_"
{=1

(4.3.30d)
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where Ai and (; are Hermite integral parameters which are given in Table E1 of Appendix E.

If m = 2, the integration of Eq. (4.3.29) can be analytically integrated. The analytical

formula for Case 1 was derived in Ref. [12], that is

Ps
n-1 1

+(--fl) J=:HV1 + aj/coa

I "-' ai 1 _-: al

-11+ _c:,: 2 : + a,/_,, + ac'''[(z : + a,/_oa
i=1 i=1

n-1 n-1

1 n--1 ai )3 ai i_ 1+gc_':{(_ 1+,_,/_,, + 2y:. 1+ ,,,/_,: (
"---- i=l "=

n-I

+12 (i + _/_,,)_} + ')

n-1
ai

)2 + 2 )-'_ ( 1 + a,lco,,)21
i=l

ai )2
i + ai/co,1

(4.3.31)

4.5.2 Case 2 - All ai are negative and m is even

If all ai are negative and m is even, V is negative. The following expansion function of f(V)

given in Ref. [12] is used, i.e.

¢(fl + V) - ¢(fl) = -¢(fl){1 - exp( _)(1 + Cl,2V + c2,2V 2 + ca,2V 3 + ... + CN,2VN)} (4.3.32)

which fulfills

f(0) =0

lim f(V) = -¢(#)
V---_-oo

Based on Eq. (23),the failureprobabilityiscomputed as

(4.3.33a)

(4.3.33b)

Pi 1 @(/5') i=i _}o){ 1 + c, a E Hk(O'--'-yH- c2,2[E

n--1 ._k(3) n-1 n-I I__2 ) t._tr_1) n-, 'n-1

k:l _k (0) l:l,l#kk---1 k---1

n--1 n--1 t..)_1 )/._ l )

+2 22 o) o)1

_-: £r(:)f_(:)£r(:)

I2 _1 +...}
l:l,lg_k p=l,p¢l,p#k k "t'tl .t.tp
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where

(4.3.34)

)O 1 2-- a rnfI (°) = e -_ *__.2u dy (4.3.35a)

= ay'_e -_ +__.2_ dy (4.3.35b)
oo

/__ 1.2.} a. . m/}(2) = a2y2m e 2_ °°a _ dy (4.3.35c)
oo

; 1 21 - a rnB (3) --" a3y3me -_y -'5"_a_ dy (4.3.35d)
c_

By using the ten-term Hermite approximate integral formula, the integration of Eq. (4.3.35)

can be computed as

lO
152_ a Srn

/_(o1 = _ Aie_. e 2-,-_-5".2-, (4.3.36a)
i=1

10
i..¢2..i_ a .¢m

/_(1) = _ Aie_. a_. e -_"- _o,2-_ (4.3.36b)
i=l

10 a2f2m. , 2--__ . e-_i + a-"_"_(2) _ Aiee: ,,, °0.2', (4.3.36c)
rft

i=1

10
_!,c2._. a ,¢m

.[._(3) ._ Z )_ie_" a3_3m'e 2-,- _o,2", (4.3.36d)

i=1

If m = 2, Eq. (4.3.35) can be analytically integrated. The analytical formula for this case

was derived in Ref. [12] that is

P_
n--1 1

z - ¢(8) II
j=t V/1 - aj/co,2

1 n--1 ai

•{1+ -_cl,2Z 1- a,/_o,2
i----1

i=l 1 -- ai/Co, 2

n-1

_,2[("-' _, )_ a,+ _: _ --a,/_,2 + 2 _,=_(1 --_,/_o,_)_1
n--1 n--1 n--1

a' i_l a' )2 _1 a,)3 + 2 _,=x1 - ai/co,2 .= (1 - a, lco,2 + 12 = (1 - ai/co,2
)_]+ ...}

(4.3.37)
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4.5.3 Case 3 - Some ai are positive, some ai are negative, and m is even

If some ai are positive, some ai are negative and m is even, V is divided as

v = yl + y_

where

V1 = __.aiy'_ >0, ai > O (i-- 1,2,...,fi-1)
i:1

n-1

v_ _a m .., -11= iYi <0, ai<0 (i=n,n+l,. n

The following expansion function of f(V) given in Ref. [12] is used, i.e.

(4.3.38)

(4.3.39a)

(4.3.39b)

¢(8 + ¼ + ½)- ¢(8) = ¢,(-Z){1- _p(-Y-_)(a + _,,,v_+ _,,v? +...)}

•_p(_V--_-_)(1+ d_,_V_+ ...)
_0,2

-¢(_){1 - _xp(_Y-_)(1+ cl,_v_.+ c_,_v]+ ...)}

•exp(--_l,1)(1 + d1,_V_ + ...) (4.3.40)

This expansion function satisfies

f(O) = O, V_ = V2 = 0 (4.3.41a)

lim f(V) = 1 - ¢(t3), at ½ = 0
V1.-., c¢

(4.3.41b)

• lim f(V) = -¢(13), at V_ = 0
V2.-_-oo

(4.3.41c)

Based on Eq. (4.3.40), the failure probability can be computed as

Pi ]F_I n--1 gk(1)
¢(-_) _(-_) H}°_(1+ dl,_F_ _0_ +.-.)

_-1 _-1 Hk(1)

•{1- j=lIIH}°)( 1 + el, 1 k=lE H_O) + "")-""}

212



_(_) II H_°)(1+_,,,E _ +-..)(2_)_ _=1 k:l

•{i- _:_II_}°)(1+ c,,_k_-_E_(0)+--.)- ..-} (4.3.42)

where H(O(i = 0, 1,2, 3) can be calculated using Eq. (4.3.29) or (4.3.30), but co,1 is replaced

by d0,_. Also, H(i)(i = 0, 1,2,3) can be computed using Eq. (4.3.35) or (4.3.36), and Co,2 is

replaced by do,2.

If m = 2, Eq. (4.3.42) can be analytically integrated, and the analytical formula for this

case was derived in Ref. [12], that is

Ps n-1 ai_-1 1 (1+ 4,_E i -Z/do,_+ ')
_(-_) - _(-_) J=_H¢1 - aj/do,2 ,=_

_-1 ai

fi--1 1 (1 "3V _---Cl, 1 E i "J-ai/cO,l _- "'')}•{1- _:_Hx/i+._/c_,1 ,=,
fi--1 ai

_-i 1 (1 + ld1,1 _ 1 + a,/co,i + "'')
+_(,815=,II ¢1 + aj/do,, ,=1

rt_l

_-' 1 (1 + ½c_,2_ a_•{1- _=.IIV,1- a_l_,_ ,=_,1-a,l_,._+ ')} (4.3.43)

4.5.4 Case 4 - All ai are positive or negative and m is odd

In order to solve the cases with an odd m and positive ai or with an odd m and negative

a_, V is divided into two parts,

n--1

I/i = _ aiy'_, Yi > 0

V -" i=1

n--1

V2 = E aiy'_, yi <_ 0
i=l

(4.3.44)

Since m is odd, V1 is positive and V_ is negative if all ai are positive, and Va is negative and

V2 is positive if all ai are negative. Assuming that all ai are positive, and V1 > 0 and V2 < 0,

the function f(V) is expanded as
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{ (I)(-fl){1- exp(- _v---_,_)(1+c1,1V1+c2,1V_+ c3,1V13+ ...cNaV1N)},¢(fi+V)--¢(_) = --¢(_1{1- _xp(_)(1 + cl,2½+ c_,2V_2+ c3,_V2+ ...cN,_V_)},

1/1>0

½<o

(4.3.45)

This expansion function also satisfies Eq. (4.3.41). Based on this function, the failure

probability can be computed as

Pf
1

-- _÷
2

,_-I L(3)k .-1 n-I r0)D1) ,_-I
DO)r(O) +

k=l k=l l=l,|¢k aJk a.q k=l

n-1 ,-1 t(l) n-I

(I)(fl)._a j=IHL_°){ 1 + cl,2 E _ko)- + c2,2[E
(271") _ k=l k=l

_-i T(3) _-i _-i _(2)T0) _-I

1(o)_(o) +
k=l k=l l=l,l#k "_k a..q k=l

n--1 n--I Lil) n--1 L_2)

(I)(-fi) II L_o){1 + c,,, E + c2,,[E +
j=l k:l

n-1

E
I=l,l:#k

k----1

n-1

E
l=l,l¢k

,_-1 ,_-1 tO)tO)

r(O)r(O)
l=l,l#k _k _1k=l

_-1 r(_)r(_)rO)

L(O)js(O)L(O)J + ...}
p=l,p#l,p_:k k 1 P

n--1 _(1)_(1)

E _'k "-'l 1L!o) _(o)j
l=l,l#k _ _l

n--I r(1)L(1)L(1 )
_'k 1 P 1
_(o)_(o)_(OlJ + ""}

p=l,pyil,p_k "_k "_l .up

(4.3.46)

where

_0c¢ 1 2 ...a_a m
L (°) = e -2y -_o, _ dy

= fooo 1 y2 a ym
L O) ayme-_ -W2 dy

fO _ _ l_.y2
L(2) = a2y2m e 2 -_-2_dy

fo00 1 2 a...,.__ym
L(3) =. a3y3me-_ -,o,_ dy (4.3.47a)

: 1 -2+ a mL (°) = e -_ _-_,2y dy
oo

LO) f; -'-"_- _---""= ague 2_ _o,2 _ dy
O0

f ____ I 2 _ a _,rtl
_(2) = a2y2me -_ '-_-'_,2_ dy

oO
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: i y2 + __!_ymL(3) = a3y3me-_ _oa dy (4.3.47b)
Oo

Since the integrations of Eqs. (4.3.47a) and (4.3.47b) are from 0 to 0¢ and from -oc to

0, a nine-term Laguerre approximate integral formula is used to compute the integral of Eq.

(4.3.47).
9 _ Ip-_ afm

L (°) = __, iie _' . e-_-,-._.,.,
i=1

9 1.--'2 a _-rn

L (1) = _ _ie _'. a_? • e
i=1

9

L (2) = __, iie _' . a2_ m
i=1

9

L (3) = _ iie _' .a-am"_i
i=1

_i__ _....a-fr,,
" e 2-*_ co,1 ",,I

l _ __.a_.f r,',

• e- _'' - _,_"' (4.3.48a)

9 _ 1 _"_. a _'r_

L(o) = __. _ie_' "e-_.,-._Z,_.,
i=1

9 _ _z___ a...._.fr,,

i=1

9 _ . a2_ TM _Li2_ _.....__.fr.L(_) = __, _ie _' • e =" oo._-,
i=1

9 _ if."2. ,a frn

Z (3) = - _ _ie _' .a3_"¢i " e-_"- _-_'_" (4.3.48b)

i=1

where _i and _i are Laguerre integral parameters which are given in Table E2 of Appendix E.

If all ai are negative, and V1 < 0 and V2 > 0, the failure probability formula is similar to Eq.

(4.3.46). But the integration interval of Eq. (4.3.47a) is from -oc to 0 for L(O(i = 0, 1,2, 3)

and Eq.(4.3.47b) is from 0 to oc for L(0(i = 0,1,2,3). Eq. (39a) becomes

9 _ 1_:-_ __.__7r,.,

L (°) = _ _e _'' e-_"-oo,,-,
i=l

9 _ _i_a_!fm

L (1) = -__iie e'. ai m. e 2"-_o,i',
i=1
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Eq. (39b) becomes

9

9

i=1

(4.3.49a)

(4.3.49b)

4.5.5 Case 5 - Some ai are positive, some ai are negative, and m is odd

If some ai are positive, some ai are negative, and m is odd, V is divided as

V __ { VI "- ul "k u2, yi > O
V2 = _1 + _2, y_ < 0

where
fi-1

ux = _ air? > O,
i=1

'o.-1

u2 = _ aiy? < O,
i=_t

n-1

fq = _ aiy'_ > O,
i=-h

fi-1

zt2 _ aiYim= < O,
i=1

(4.3.50a)

a, > O (i=1,2,...,h-1), Yi > O (4.3.50b)

ai < O (i = n,n + l,...,n-1), Yi > O (4.3.50c)

ai < O ( i = n, n + l, ..., n -1), yi < O (4.3.50d)

a, > O (i = l,2,...,fi-1), Yi < O (4.3.50e)

In this equation, ul and fix are positive, and u2 and fi2 are negative. By combining Case 3 and

Case 4, the function f(V) is expanded as
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¢(#+v)-_(#) =

• (-#){i - exp(-_-._ )(1 + c1,1u, + c2,xu_ + ...)}. exp( _-a-)(1 + d,,2u: + ...)
, aO,2

-_(#){i - exp(_,_ )(I + ci,2u2 + c2,_u_ + ...)} . exp(-_-_,_ )(1 + dlaua + ...)

at Yi > 0

• (-#){1 - exp(- _o--_-4)(1 + cl,lfq + c2aft_ + ...)}.exp(_)(1 + dl,2fte + ...)

-_5(fl){1 - exp( _-gz-)(1 + c,,252 + c2,25_ + ...)} "exp(-_o._)(1 + d,,lf_l + ...)
¢0,2

at Yi <_ 0
(4.3.52)

This expansion function satisfies Eq. (4.3.41). Based on this function, the failure probability

can be computed as

Ps
n-1 3(+ 1)

_-I 7(+°)/1 _k,d,,_¢(-#)II _j,, _,+ a,,__ _(+o)+--)0(-#)

_-,L!+°) _,-1L_÷,)
-{1 - II . (1 + c1,1 _ .L(+O--'--_/_ + ...)- ...}

j=l k=l

_,--1 _,--1 T.(+1) _1,--1 Z (+0)(1 n--I_(#) I] r(+°)" _""_._, -_,__.+ a,,lE L(+o)+ .){1 - II -j ,. + c,,_E-+ (2_)-"_- _=1 k=l I,,,_ i=,_ k=_

_(--,8),.,_, II L_._°)( 1 + d,,_ E L_:do)- + "")" {1 - 1"[ L}-°)( 1 + cx,i E(2_-) T- j=x k=l .f=. k=_

4(#) 11L(-°_q
+(2__)._Taj=_ _,_, +d,,,_ +...)-{1-H.[.,}-°)(l+cL_'__ -_=_ .L_._°) k=lj=l

_+o)+..-)--.-}

L(-_)

_-o) +-.-)- .-}

14-"
t.__o)+---)-.--)

(4.3.53)

where L_ +i) and "-'j,dr(+i)(i = 0, 1,2, 3, j = 1, 2, ...fi - I) are .the integrations corresponding to

ul (u_ > 0) and are given in Eqs. (4.3.47a) and (4.3.48a), but Co4 is replaced by doa for r(+;)_j,d

integrations. L} -i) and L_ i) (i = 0,1,2,3, j = h,...,n- 1)are the integrations corresponding

to _ (gl > 0), and L_ -0 can be calculated using Eq. (4.3.47a), but the integral interval is

from -oc to 0. Its Laguerre formula is given in Eq. (4.3.49a). For L (-i) in Eq. (4.3.49a)j,d , CO,1

_(+i) (i O, 1,2,3, j = fi,...,n - 1) are the integrationsis replaced by doa . -_/+i) and "j,d =
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correspondingto u2 (u2 < 0), and L (+i) can be computed using Eq. (4.3.47b), but the integral
--3

interval is from 0 to +oc. Its Laguerre formula is given in Eq. (4.3.49b). For -j,d_(+0, Co,2 in

Eq. (4.3.49b) is replaced by d0,2. L_.-i) and L_ ') (i = 0,1,2,3, j = 1,...,fi- 1) are the

integrations corresponding to fi2 (fi2 < 0) and are given in Eqs. (4.3.475) and (4.3.48b), but

co,2 is replaced by d0,2 for T(-0"_ j,d "

In Ref. [12], the coefficient c_,j (i = 0, 1,2, 3, ..., j = 1,2) was calculated by comparing

the same order terms (first-order, second-order and third-order derivatives) on both sides of

the expansion functions. The formulae for calculating c_,a and ci,2 for Case 1 and Case 2 with

one-term, two-term and three-term approximations are given in the Appendix F. For Cases 3,

4 and 5, the coefficient c/,1 is identical to the results of Case 1, and ci,2 is identical to the results

of Case 2. The coefficients d0,1 and d0,2 with dl,a = d2,1 = ... = 0 and dl,2 = d2,2 = ... = 0 are

calculated as

d0,1 = 2c0,1 (4.3.54a)

d0,2 = 2Co,2 (4.3.54b)

4.5.6 Flow-chart

The flow-chart given in Fig. 4.7 shows the scheme of the higher-order reliability method.
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Example 4.9

This example has a highly nonlinear performance function, which is

g(xl,x2) -- 2.5 ÷ 0.00463(xl ÷ x2 - 20) 4 -0.2357(Xl - x2)

in which xl and x_ are the random variables with normal distributions (mean xl = 10, _ = 10;

standard deviation al = as = 3). Compute the failure probability using HORM.

1). Compute the safety index and the MPP, U*;

The safety index /_ is calculated as fl = 2.5. It requires 3 g-function and 2 gradient

calculations. The MPP is located at U*(1.7678,-1.7678)

2). Rotate the standard normal U-space to the new standard normal Y-space;

The orthogonal matrix can be solved by using the procedure given in Section 4.2.1.

71 \ 0.7071 -0.7071

Using Y = HU, The coordinates in the rotated standard normal space at the MPP can be

obtained as Y'(O, 2.5)

3). Select two additions on the limit state surface and construct the adaptive approximation.

Two points on the performance function are found as Y_(-0.25,2.50588) and

Yb(0.25,2.50588) by using the approximate performance function which is constructed in

computing the safety index. The approximation in Y-space is constructed as

Y2 = 2.5 + 1.5y_

This approximation passes through Y_, Yb and Y*, so it has a good accuracy around the MPP.

4). Calculate the failure probability using HORM;

Since the nonlinearity index m equals 4 and al = 1.5 > 0 (Case 1), Eq. (4.3.28) is used for

calculating the failure probability. The failure probability calculated by using Eq. (4.3.28) is

0.003042, which is quite close to the Monte Carlo solution (Pf = 0.00297). The results obtained
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from Breitung and Tvedt's methodsarethe sameasthe result of FORM (Py = 0.006209),which

showsthat there is no improvementoverFORM for this highly nonlinearproblembecausethe

curvaturesat the MPPs are zero.

4.6 Comparison of Different Methods

Example 4.10

The performance function in U-space is

= 1.0+ +
a b

in which ul and u2 are the random variables with standard normal distributions; a and b can

be any values. In this example, a is fixed to be 2.0. Three cases are considered with different

b values (Case 1: a = 2, b = 4-0.5; Case 2: a = 2, b = 4-2; Case 3: a = 2, b = 4-4)

In three cases, the MPP search is carried in U-space using an efficient safety index algorithm

[6]. In this _ search, the TANA2 approximation presented in Ref. [15] is used. Case 1 and

Case 2 require 3 g-function and 3 gradient calculations, and Case 3 requires 8 g-function and 7

gradient calculations. The coordinates in the rotated standard normal space at the MPP are

Y*(0,0.3537), Y*(0,1.4130), and Y*(0,2.8284) for cases 1, 2 and 3, respectively. In order to

construct the approximation in the neighborhood of the MPP, two points on the performance

function are found as Y_(-2.1460, 0.6462) and Yb(2.1460, 0.6388) for case 1, Y_(-2.1460, 2.7024)

and Yb(2.I460,2.4460) for Case 2, and Y_(-2.1460,5.1427) and Yb(2.1460,5.1376) for Case

3. This is done by using the approximate performance function which was constructed in

computing the safety index. No extra exact analyses were needed. By following the procedure

given in Eqs. (8-13), the approximation can be obtained as

0.3537 + 0.06352y_, Case1
_7_ = 1.4130 + 0.28000y_, Ca.se2

2.8284 + 0.50144y_, Case3
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The approximate curvatures of three cases at the MPP are 0.12704, 0.5600, and 1.0029,

respectively. It is obvious that the above three approximations for three cases pass through

the corresponding Y,, ]_ and Y*, therefore they can provide good fit approximations for failure

probability calculation in a larger neighborhood of the MPP. Since the nonlinearity index, m,

equals 2, the closed form formula given in Eq. (4.3.31) is used to calculate the failure probability.

Fig. 4.8a depicts the iteration history of the safety index search, and Fig. 4.8b shows that

the two-point adaptive approximation is closer to the exact limit state surfaces than the FORM

and SORM approximations for the failure probability calculations. The numerical results of

P//2 are shown in Table 4.3, which indicate that the failure probability calculated by using

HORM is quite close to the Monte Carlo simulation, while the Breitung and Tvedt methods

are less accurate. The Cal-Elishakoff method resulted in an impractical value for Case 3. The

Koyluoglu-Nielsen and HORM gave similar Pj predictions. In HORM, there is no need for the

second-order gradients information.

In addition, FORM, SORM and HORM all lose accuracy because the limit state surface is

not a continuous curve in U-space or Y-space. There is no good way to predict whether or not

the limit state surface will fall apart. However, one may be able to find the neglected part if

some tests can be done before Pf is calculated. For example, after finding the MPP, Y, and Yb,

we can substitute (0, 0, ..., -fl), (-kfl, -k_,...-kfl, -rla), and (k_, kZ,.., kZ, -_b) into the

limit state function. If all three points are also on the surface, it means that the limit state

surface consists of two symmetrical parts. Therefore, the failure probability obtained from

FORM, SORM and HORM needs to be doubled. This test requires 3 additional g-function

calculations.

Example 4.11

The performance function is

g(xl, x2) = 2.2257
0.025v ,

(Xl-[-x2- 20)3+ 0.2357(xl - x2)
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Table 4.3. Failure Probability Comparisons for Example 4.10

Exact Analysis for P! Failure Probability

P,/2
Method Case I Case 2 Case 3

FORM

First-order

Gradients

0

Second-order

Gradients

0.36179 0.07883 0.00234

Brdtung 0 1 1 0.35098 0.05578 0.00105

Tvedt 0 1 1 0.34768 0.05316 0.00101

Cai- 0 1 1 0.33077 0.04965 -0.03269

E_shakoff

Koyluoglu- 0 1 ,I 0.33073 0.05057 0.00099

Nielsen

Monte samp_ s_e=100000 0,33659 0.05435 0.00108

Carlo

HORM 0 0 0 0.33899 0.05405 0.00106

Table 4.4. Failure Probability Comparisons for Example 4.11

Exact AnalysisforP!

Method g-func. First-order Second-order FailureProbability

Calculation Gradients Gradients ])I

FORM 0 0 0 0.013014

P, = @(-19)

Breitung 0 1 1 0.013014

Tvedt 0 1 1 0.013014

Cal-EUshakoff 0 1 1 0.013014

Koyluoglu- 0 1 1 0.013014

Nielsen

Monte sample size=l,000,000 0.019188

Carlo

HORM 0 0 0 0.018180
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Fig. 4.9 A Circular Shaft Subjected to External Bending Moments and Torque

in which xx and x2 are the random variables with normal distributions (mean xx = 10, 52 = 10;

standard deviation al = as = 3).

The MPP search using an efficient safety index algorithm [6] requires 3 g-function and 2

gradient calculations. The coordinates in the rotated standard normal space at the MPP are

Y*(0, 2.2257). Two points on the performance function are found as Y_(-0.22226, 2.22471) and

Yb(0.22258, 2.22691) by using the approximate performance function. No extra exact analyses

are needed. The approximation is

Y2 --- 2.2257 - 0.1Y13

Since the nonlinearity index, m, equals 3 and al = -0.I < 0 (Case 4), Eq. (4.3.46) is used

to calculate the failure probability. The results shown in Table 4.4 indicate that the failure

probability from HORM is quite close to the Monte Carlo solution (P/= 0.019188), while the
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results obtained from Breitung, Tvedt, and Koyluoglu-NielsenSORM methodsare the sameas

the FORM result. This showstheseSORM methodsprovideno improvementover the FORM

becausethe curvaturesat the MPP arezeroand the curvature-fitted paraboloid reducesto the

tangent plane.

Example 4.12

This example is taken from Ref. [13],which is a circular shaft with one end clampedand

one end free (Fig. 4.9). The structure is subjectedto two externalmoments M_ and Mz and a

torque T. The moments My, Mz and torque T are assumed as independent random variables

with normal distributions. The mean values of My, M_ and torque T are #a,/_2 and #3, and all

the standard deviations are cr. The reliability of the shaft depends on the stresses at the point

A which has the maximum tensile and shear stresses and can be calculated from

1 1 2

where ul, u2 and u3 are standard normally distributed random variables of My, Mz and T. The

safe domain 12 in X-space is described by

g(M_,M,,T)=( )2 +(7) +( )2_e2<0

In U-space, the safe domain is a non-central sphere

g(u,,u2, u3) = (ul + ,_)2 +(u2+ _A)2 +(u3+ ,_)2 _ e2 <0
O" Cr Or

(M_,,_2 and 2 2 2 T 2.wheree=, a ,, M_iel d > M_ + M_ + e is the radius of the non-central sphere. An

exact solution was obtained in Ref. [13] as

1 1 1

R=¢(r+e)-¢(r-e)+_-/_ {exp[-_(r+e)2]-_xv[-_(r-e)_])

where

#3)2
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Figs. 4.10a-4.10dshowthe exact and approximatereliability resultsof the shaft with four

different valuesof r (Case1: r=0.05; Case2: r=0.1; Case3: r=l.0; Case4: r=2.0). For all four

cases,the nonlinearity index m is equal to 2, and the closed form formula given in Eq. (4.3.37)

is used for calculating the failure probability, ai given in Eq. (4.2.27b) axe calculated by the

adaptive two-point approximation discussed in Section 4.2.5, so exact second-order derivatives

are not required for the curvature calculations. In Figs. 4.10a-4.10c, the higher-order and

Koyluoglu-Nielsen methods are the closest to the exact results even when e is small. Also,"

the results of HORM are almost the same as Koyluoglu-Nielsen's, which indicates that the

procedure given in Eqs. (4.2.22)-(4.2.27) for constructing the approximation is very effective

and accurate. The FORM gives poor accuracies when e is less than four, i.e. when the failure

surfaces are closer to the origin. The Breitung's method yields good results when r is not small

and e is greater than 2.0 for Case 3 and greater than 3.0 for Case 4, as shown in Figs. 4.10c

and 4.10d. However, when r is small, the Breitung's method produces large errors; it is even

worse than the FORM, as shown in Figs. 4.10a and 4.10b. Particularly, the Breitung's method

resulted in impractical reliability values; for example, the probabilities are -0.0284, -1.2313 and

-2.5005 when r is 2.0, 1.5 and 1.0, respectively. The Cai-Elishakoff method produces similar

results to the present and Koyluoglu-Nielsen methods when e is greater than 2.5 for Cases 1

and 2, and greater than 2.0 for Cases 3 and 4. The Tvedt method is not valid for Cases 1, 2

and 3, but it provides the best results for Case 4.

4.7 Summary

In this chapter, several failure probability methods are presented. FORM can provide good

results for the failure probability calculation when the limit-state surface is nearly linear in

the neighborhood of the MPP. It is simple and doesn't require any additional calculations.

For problems with larger curvatures, SORM needs to be used to avoid unreasonable and

inaccurate FORM results. However, when the limit state function curvatures are higher at
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the MPP, resultsobtained using SORM may be inaccurate. For example,the curvature fitted

paxaboloid approximations of SORM can't improve the accuracy for the cases shown in Fig.

4.4. Also, Breitung and Tvedt methods are not valid for _aj _< -1 and do not work well in the

case of negative curvatures. HORM is needed ill these situations. Furthermore, HORM can

be effectively used for the problems requiring expensive or impossible second-order gradient

calculation of the performance function without incurring expensive computations. In HORM,

the additional mathematical steps involved in building the higher-order approximations needed

the Hermite and Laguerre integral formulations.
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CHAPTER 5. SYSTEM RELIABILITY CALCULATION

The safety index and failure probability calculations in Chapters 3 and 4 were aimed

primarily at assessing the reliability of one element against failing in one particular failure

mode. In fact, a real structure generally consists of many elements. Even in simple structures

composed of just one element, various failure modes such as bending action, shear, buckling,

axial stress, deflection, etc., may exist and be relevant. The composition of many elements in

structures is referred to as a "structural system". A system may be subject to many loads,

either single or in various combinations. Therefore, the reliability analysis of structural systems

involves consideration of multiple, perhaps correlated, limit states. Considering the structural

reliability just on an individual element failure may not give a safe estimation for the structural

system. A more reasonable and accurate probabilistic analysis should consider the correlation

of multiple failure modes.

In this chapter, some basic definitions and concepts are introduced in Section 5.1; the

failure mode approach is given in Section 5.2; the series and parallel systems are introduced

in Sections 5.3 and 5.4, respectively; system reliability bounds are given in Section 5.5, and

system reliability calculations using approximations are given in Section 5.6.

5.1 Basic Definitions and Concepts

5.1.1 Failure Element

In system reliability, each failure mode for a discipline or an element of a structural system is

called a failure element or member. An element (or material behavior) in structural engineering

is usually idealized as one of the forms of strength-deformation relationships shown in Fig. 5.1.

Elastic behavior (Fig. 5.1a) corresponds to the maximum permissible stress concept. With

this idealization, failure on any one location within the structure, or of any one element, is

considered to be identical to structural failure. Although this is clearly unrealistic for most
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structures, it is nevertheless a convenient idealization.
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Fig. 5.1 Various strength - deformation (R-A) relationships

When one load system acts on a structure, the location of the peak stress or stress resultant

can be identified from an elastic stress analysis. For such an analysis, use of deterministic elastic

properties and dimensions is often adequate, owing to the very low coefficient of variation

associated with these variables [1]. When more than one load system acts, the location of

the peak stress (resultant) will depend on the relative magnitudes of the load systems, and

several candidate locations or members may need to be considered. For large structures, such

identification may not be easy by inspection alone.

Brittle failure of an element does not always imply structural failure, owing to redundancy

of the structure. The actual member behavior can therefore be better idealized as "elastic-

brittle" indicating that deformation at zero capacity is possible for a member, even after the

233



peak capacity has been reached (Fig. 5.1b).

Elastic-plastic element behavior (Fig. 5. lc) allows individual members or particular regions

within the structure to sustain the maximum stress resultant as deformation occurs. When the

elastic member's stiffness approaches infinity, this behavior is known as idealized rigid-plastic

behavior. A generalization of both elastic-brittle and elastic-plastic behavior is elastic-residual

strength behavior (Fig. 5.1d) and a further generalization is elastic-hardening (or softening)

behavior (Fig. 5.1e). The latter may be seen as an approximation to general behavior including

post-buckling effects. Even without introducing reliability concepts, the analysis of these latter

behaviors is complex. Of course, general non-linear (curvilinear) strength-deformation relations

(Fig. 5.1f) present even more difficulties.

5.1.2 Element Failure Probability

Element failure probability P_ is the failure probability of each failure element. P/can be

calculated using the first-order reliability method (FORM), the second-order reliability method

(SORM), or the higher-order reliability method (HORM) introduced in Sections 4.3, 4.4 and

4.5, respectively.

5.1.3 Joint Failure Probability

Joint failure probability is the union probability of every two failure modes, which considers

the combined effects of two or more elements. The joint failure probability can be calculated

by approximating the joint failure region by the linear safety margins at the MPP of each

failure surface (first-order system reliability analysis), or at the joint point U_) on the joint

failure surface closest to the origin (second-order system reliability analysis). The details of

computing the joint failure probability are given in Section 5.6.

5.1.4 Structural Failure

Structural failure (as distinct from individual element or material failure) may be defined
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in a number of ways, including the following:

(i) Maximum permissible stress is reached anywhere (or(x) = am_,);

(ii) (Plastic) collapse mechanism is formed (i.e. zero structural stiffness is attained);

(iii) Limiting structural stiffness is attained;

(iv) Maximum deflection is attained;

(v) Total accumulated damage reaches a limit (e.g. as in fatigue).

°- I

Node
"failure"

(a)

J Structure Fails ]

"OR" operator

[ Sway Mode ] [.Combined Mode

(b)

Fig 5.2 Fault-tree representation

Structural failure modes consisting of the combined effects of two or more elements or

material failure events, such as statically indeterminate structures, are of particular interest

in the determination of structural system reliability. If all failure modes for the system have

been identified, the various events contributing to these failure modes can be systematically

enumerated using the "fault-tree" concept. An example of a fault-tree is shown in Fig. 5.2b

for the elementary structure of Fig. 5.2a. The procedure is to take each failure event and

to decompose it into contributing subevents, which are themselves decomposed in turn. The

lowest subevents in the tree correspond, for structures, to member or material failure. At this

level (if not earlier) limit state equations can be written.
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5.1.5 System Failure Probability

System reliability concerns the formulation of the limit states and calculation of the system

failure probability when the system has more ways of failing. System failure probability includes

the element failure probabilities and joint failure probabilities. The calculation of the system

failure probability is given in Section 5.6.

5.1.6 Multi-dimensional Standardized Normal Distribution Function

Since the multi-dimensional standardized normal distribution function is important for

computing the system failure probability, particularly the joint failure probability, the definition

and mathematical details axe introduced in this section. The k-dimensional standardized normal

distribution function is defined as

oo k

O_(X;p _) =/_ ¢(t) YI o( X-j =_----Pt) dt
oo j=l

where tY= [p/j] is the correlation matrix for the lineaxized safety margins.

Assume k = 2 and two linear safety margins M1 and M2 are given as

(5.1)

M1 -_ ao - (alul + ... + anu,) (5.2a)

M2 = bo - (blul + ... + b_u,) (5.2b)

where ui (i -- 1, 2, ...n) are standard normal variables; Ma and M2 are standardized normally

distributed variables with the correlation coefficient p, where

n

p = _ aibi (5.3)
i---1

If (_ = (a_,..., a,_) and (72 = (b_,..., bn) are chosen as unit vectors, the correlation coefficient

p can be written

p=cos(v)
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where v is the angle between the unit vectors _1 and (_2 (Fig. 5.3, where p > 0).

1V_=0

C
D

r

Fig 5.3 Geometrical illustration for p and approximate ¢2 calculations

With the above p, the bivariate normal distribution function ¢2 can be calculated as

j_0 p
¢2(-Zi,-/?j; p) = ¢(-Zi)¢(-Zj) + ¢2(-/?i,-Zj; z)dz (5.5)

in which ¢2(-fl/, -flj; z) is the probability density function for a bivariate normal vector with

zero mean values, unit variances, and a correlation coefficient z, which is given as

From Eqs. (5.5) and (5.6), ¢2 must be evaluated numerically, but simple bounds on ¢2

can be given to avoid any numerical integration. For practical purposes these bounds will

generally be sufficient. Fig. 5.3 shows a situation with p > 0. The reliability indices fll and

/?2 corresponding to the safety margins M1 and M2 are equal to a0 and b0, respectively. The

joint failure probability PxY2 is equal to the probability content in the shaded region (angle

BAE). Therefore, PlY2 is greater than the probability contents in the angles BAD and CAE.

However, P_2 is less than the sum of the probability contents in the angles BAD and CAE. This
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observation makes it possible to find simple bounds for P_2 = ¢2(-fll,-_2; p). The probability

content P1 in the angle CAE is equal to

P1= _(-_1)_(-72)

and likewise the probability content P2 in the angle BAD

(5.7)

P2= ¢(-Z2)¢(-71)

where 71 and 72 are shown in Fig. 5.3. By simple geometrical considerations

(5.8)

72--

71--

Therefore, for p > 0, the following bounds exist

(5.9)

(_.10)

max(P1, P2) <_ PI <- 1)1 + P_

max(P1, P2) < ¢_(-81, -_2; p) < P1 + P_

For p < 0, the following bounds can be derived

(5.11a)

(5.11b)

0 __ (_)2(--/_1, --1_2; P) __ rain(P1, P2) (5.12)

5.2 Failure Mode Approach

The failure mode approach is based on the identification of all possible failure modes for the

structure. A common example is the collapse mechanism technique for ideal plastic structures.

Each mode of failure for the structure normally consists of a sequence of element "failures"

(i.e. reaching an appropriate element limit state) sufficient to cause the structure as a whole
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to reach a limit state such as (a)-(e) mentioned in Section 5.1.4. The possible ways in which

this might occur can be represented by an "event tree" (Fig. 5.4) or as a "failure graph" (Fig.

5.5). Each branch of the failure graph represents the failure of an element of the structure,

and any complete forward path through the branches starting from the "intact structure" node

and concluding at the "failure" node represents a possible sequence of element failures. This

information is also conveyed in the event tree.

2

3 O

1 1

3
0 beam mode

sway mode
3

O beam mode

combined mode

sway mode

combined mode

Fig. 5.4 Event - tree representation for structure of Fig. 5.2a

B E

Failure

Intact dummy
Structure

Fig. 5.5 Failure-graph representation for structure of Fig. 5.2a

Since failure through any one failure path implies failure of the structure, the event

"structural failure" (F_) is the union of all k possible failure modes:
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P1 = P(Fs) = P(F1U F_ U ... U Fk) (5.13)

where F1 is the event "failure in the/th mode". For each such mode, a sufficient number of

elements (or structural "nodes") must fail; thus

P(F ) = P(F1, n n ... n Fk;) (5.14)

where Fj_ is the event "failure of the jth element in the ith failure mode" and k_ represents the

number of elements required to form the ith failure mode. For the simple example of Fig. 5.2a,

there are m = 3 failure modes, and k_ = 3, k_ = k_ = 2.

It is important to note that the failure mode approach is unconservative with respect to

element failure. If the possibility of element failure (or one or more of the element failure

modes) is ignored, the failure probability of the structure will usually be underestimated [2].

5.3 Series Systems

The series system is one kind of structural system idealization. In a series system, typified

by a chain, and also called a "weakest link" system, attainment of any one element limit

state constitutes failure of the structure (Fig. 5.6). For this idealization, the precise material

properties of the elements do not matter. If the elements are brittle, failure is caused by element

fracture; if the elements have a plastic deformation capacity, failure is caused by excessive

yielding. It is evident that a statically determinate structure is a series system since the failure

of any one of its members implies failure of the structure. Each element is therefore a possible

failure mode. The system failure probability for a weakest link structure composed of k elements

is computed as [3]

Pf = P( F_ U F2 U £_ U ... U Fk) (5.1s)
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Comparedto Eq. (5.13), this showsthat the seriessystemsformulation givenin Eq. (5.15)

is of the "failure mode" type.

If eachfailure mode Fi(i -- 1, 2, ..., k) is represented by a limit state equation gj(X) = 0 in

X-space, the direct extension of the fundamental reliability problem given in Eq. (4.1.6a) is

Pj = f fx(X)dX (5.16)

where X is the vector of all basic random variables and gt is the domain in X defining failure

of the system. This is defined in terms of the various failure modes as gj(X) < O. In two-

dimensional X-space, Eq. (5.16) is defined in Fig. 5.7 with F2 and gj(X) <_ 0 shown shaded.

\\\\\\\\\

( )R1

Q

(a)

Q

( (
f/////// ////_'

(b)

Fig. 5.6 Series system

If the limit state function gj(U) = 0 in U-space corresponding to gj(X) = 0 in X-space is

linearized at the design point (Fig. 5.8), the failure probability of jth element can be calculated

as

P/ = P(gj(U) <_ O) ,_ P(j3j + GjU < O)

where c_j is the unit normal vector at the design point and flj is the safety index.

(5.17)
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Fig. 5.7 Basic structural reliability problem in two dimensions

An approximation of the failure probability Ps of the series system shown in Fig. 5.6 can

be computed as [4]

where _= (A, a_,...,_k).

Ps = P(u';:l{g_(u)< 0))

= P(u';_l{aju <_-_j))

= 1- P(o_=l{&jv> -/_j})

= 1- P(A_=I{-GjU< Zj})

(5.iS)

242



v

Ul

Fig. 5.8 Linearized limit state surface at the MPP in U-space

Using Eq. (5.18), the calculation of the probability of failure of a series system with linear

and normally distributed safety margins is reduced to calculation of a value of _k. However,

calculations of values of _k for k >__3 can generally only be performed in an approximate way

or upper and lower bounds must be used. For k = 2, the upper and lower bounds are given in

Eqs. (5.11) and (5.12).

Example 5.1

This example is taken from Ref. [5]. The simple structural system shown in Fig. 5.9 is

loaded by a single concentrated load P. Assume that system failure is failure in compression in

element 1 or element 2. Let the load-carrying capacity in the elements 1 and 2 be 1.5 nF and

assume that P and nv are realizations of independent normally distributed random variables

P and ArE with

_p -_ 4kN, ap = 0.8KN

t.ZNF -- 4kN, O'NF = 0.4kN
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Fig. 5.9 Simple structural system with a single concentrated load

Safety margins for elements 1 and 2 are

3
M1 = -_NF - --_-- P

Since M1 and M2 are linear functions, the safety indices of M1 and M2 can be easily

computed using the Mean Value method (Eq. (3.3.7)).

#MI

O'M_

6 - 2V/2

_/(_ x 0.4) 2 + (_ x 0.8) 2

= 3.846

#M2
82 -

(TM 2

4 - 2x/2

_/(×0.4) 2 + (_ x 0.8) 2

= 1.691

244



gl = (0.728,-0.686)

(_2 = (0.577,-0.816)

So the U-space safety margins can be given as

MI = 0.728Ul - 0.686u2 + 3.846

M2 = 0.577Ul - 0.816u2 + 1.691

The correlation coefficient between the safety margins is

p = 0.728 x 0.577 + 0.686 × 0.816 = 0.98

Therefore, the probability of failure of the system is

P] = 1 - _2(3.846, 1.691; 0.98)

5.4 Parallel Systems

When the elements in a structural system (or subsystem) behave in such a way or are

so interconnected that the reaching the limit state in any one or more elements does not

necessarily mean failure of the whole system, the reliability problem becomes one of a "parallel"

or "redundant" system analysis. Parallel systems can be modeled as in Fig. 5.10.

Redundancy in systems may be of two types; "active redundancy" occurs when the

redundant elements actively participate in structural behavior even at low loading and "passive

redundancy" occurs when the redundant elements do not come into play until the structure

has suffered a sufficient degree of degradation or failure of its elements. Passive redundancy, or

"fail-safe" design, implies the availability of a reserve capacity. It increases the reliability of a

system as is easily demonstrated. However, whether active redundancy is beneficial depends on
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Fig. 5.10 Parallel system

the behavior characteristics of the elements. As might be expected, for ideal plastic systems,

the "static theorem" guarantees that active redundancy can not reduce the reliability of a

structural system.

With active redundancy, the failure probability of a k-component parallel system (or

subsystem) is

PI = P(Fs) : P(F1 n F_ n... n Fk) (5.19)

where Fi is the event "failure of the ith component". It also can be represented in X-space by

r

P/ = Jnlex "'" J fx(X)dX (5.20)

where _1 is the intersection domains shown in Fig. 5.7.

Since a parallel system can only fail when all its contributory components have reached

their limit states, it follows that the behavior characteristics of the components are considerably

important in defining "system failure". This is in contrast with the situation for series systems.
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Fig. 5.11 Brittle material behavior in parallel system

This example is taken from Ref. [1] which considers the idealized parallel system shown in

Fig. 5.11. If the elements are all brittle, with different fracture strains sj the maximum load

P that can be supported at any particular strain level E is

=max[n,( ) + n2( ) + (5.21)

where P_ = Aiai(e) for i = 1 to 3. Here Ai represents cross-sectional area and ai represents

stress.

Since each resistance R_(i = 1,2,3) is a random variable, Eq. (5.21) is not easy to apply.

Each possible state era, el2 and e/3 must be considered as a possible state of maximum capacity.

Thus, all possible combinations of failed and surviving elements must be considered. Each such

combination will be a "parallel" subsystem, thus

Rsv, = max{[n,(ef2)+ R2(e.t2) + R3(e /2)], [R,(e /,) + R3(e /, )], R3(e /3) }

and

PI = P(R_us - P < O)
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5.5 System Reliability Bounds

Rather than proceed with the direct integration of Eqs. (5.4) and (5.20), an alternative

approach is to develop upper and lower bounds on the probability of failure of a structural

system. Consider a structural system subject to a sequence of loadings and the system may

fail in any one (or more) of a number of possible failure modes under any one loading in the

loading sequence. The total probability of structural failure may then be expressed in terms of

mode failure probabilities as

= P(F ) u P(F2 n u P(F3 n n u P(F, n S3n S2n u ... (5.29,)

where Fi denotes the event "failure of the structure due to failure in the ith mode, for all

loading" and S_ denotes the complementary event "survival of the ith mode under all loading"

(and hence survival of the structure). Since P(F2 n $1) = P(F2) - P(F2 N FI)..., Eq. (5.22) can

also be written as

= P(F )+ P(F,nF )+ P(FanF )- P(F nF )+ (5.23)

where (F1 n F2) is the event that failure occurs in both modes 1 and 2.

5.5.1 First-order Series Bounds

The probability of failure for the structure can be expressed as P.¢ = 1 - P, where P is the

probability of survival. For independent failure modes, P can be represented by the product of

the mode survival probabilities, or, noting that Pi = 1 - P/1, by

k

Pf = 1-Fiil - P!] (5.24)
i=l

where 19/1 is the probability of failure in mode i. This result can, by expansion, be shown to

be identical to Eq. (5.23). It follows directly from Eq. (5.23) that, if pS << 1, then Eq. (5.24)
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can be approximated [3] by

k

P__ E P! (5.25)
i=l

In the case where all failure modes are fully dependent, it follows directly that the weakest

failure mode will always be weakest, irrespective of the random nature of the strength. Hence

= m:_x [P/] (5.26)Pi

Based on Eqs. (5.24) or (5.25) and (5.26), the first-order series bounds on the failure

probability in terms of the individual failure mode probabilities can be given as [6]

k k

_ E P! (5.27)m_xP, < Ps-<E P! _
i=1 i=1

where k is the number of failure elements, and P/is the failure probability of individual failure

modes.

Unfortunately for many practical structural systems, the series bounds of Eq. (5.27) are too

wide to be meaningful [7]. Better bounds can be developed, but more expensive computation

is required.

Example 5.3

Consider the structure given in Example 5.1, with two failure elements. The failure

probability of the system is calculated as

Pj = 1 - ¢2(3.846,1.691; 0.98)

where the probabilities of failure of the failure elements 1 and 2 are

P[ = ¢(-3.846) = 0.00006
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P[ = ¢(-1.691) = 0.04947

The first-order bounds for the system failure probability are calculated as

0.04947 <: P! < 1 - (1 - 0.00006)(1 - 0.04947)

0.04947 _< P] < 0.04953

For this series system p = 0.98. Therefore, the lower bound can be expected to be close to

Pj.

5.5.2 Second-order Series Bounds

Second-order bounds are obtained by retaining terms such as P(F1 n F2) in Eq.(5.23), which

for the case of exposition, may be rewritten as

P] = P(F1)

+P(F2) - P(FI A F2)

+ P (F3 ) - P (FI n F3 ) - P (F2 n F3 ) -b P (FI n F2 n F3 )

+P(F4) - P(F, n F4) - P(F2 n F4) - P(F3 n F4) + P(F1 n F2 N F4)

+ P (F, n F3 n F4) + P (F2 n F3 n F4) - P (F, n F2 n Fz n F4)

P(Fs) -...
k k k

-- _-_ P(Fi) - _-:_ _--: P(Fi D Fj) + _-_ _-_ _ P(Fi N Fj A Ft) - ... (5.28)
i----1 i<j i<j<l

Because of the alternating signs as the order of the terms increases, it is evident that

consideration of only first-order terms (i.e. P(F_)) produces an upper bound on Pf, and

consideration of only first- and second-order terms produces a lower bound, first-, second-

and third-order terms again on upper bound, and so on.

It should edso be clear that consideration of a_ additional failure mode can not reduce the

probability of structural failure, so each complete line in Eq. (5.28) makes a non-negative
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contribution to P/. Noting that P(F_ N Fj) >_ P(F_ O Fj N Ft),..., a lower bound to Eq. (5.28)

can be obtained if only the terms P(F_) - P(F_ N Fj) are retained, provided each makes a

non-negative contribution [8]:

k i-1

P] > P/+ _ maxlP/- _ P(Fi N Fj),O}
i=2 j=l

Let P_ = P(Fi N Fj), then

(5.29a)

whereP/= P(_).

k i-1

PI _ P/+ _max{P/- E P_,0} (5.29b)
i=2 j=l

An upper bound can be obtained by simplifying each line in Eq. (5.26)([8]):

k k

-<,=IEP/- E (5.30)
Therefore, the Ditlevsen second-order bounds are given as

k i-1 k k

P[ + E max{P/- E Pi{, O} < P� < E P/ - E max P/, " (5.31)
i=2 j=l -- -- i=1 i=2 j<i J

The gap between the Ditlevsen bounds (Eq. 5.31) is usually much smaller than the gap

between the first-order bounds given in Eq. (5.27).However, the Ditlevsen bounds require

calculation of the joint probabilities P_ and these calculations are not trivial. Usually a

numerical technique must be used. When the safety margins for the failure elements i and

j are linear and normally distributed, then

P_ = ¢2(-8_, -8_; p) (5.32)

Example 5.4

Consider a series system with two failure elements and let the reliability indices be/31 = 2.5

and /32 = 3.0 and let the correlation coefficient be p = 0.7. Compute the system failure
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probability Pj using the first- and second-order series bounds.

1) First-order bounds

The failure probabilities of elements 1 and 2 are computed as

P1] = ¢(-2.5) = 0.00621, P2/ = _(-3.0) = 0.00135

The first-order series bounds for the system failure probability are

0.00621 < Pf < 1 - (1 -0.00621)(1 -0.00135) = 0.00755

2) Second-order bounds

From Eqs. (5.7)-(5.12), the approximate joint failure probability P[2 is calculated as

where

SO

?7_ax(P1, P2) _<_ (I)2(-J_l, -_2; P) -_< P1 At- P2

Pl = v(-2.5)_(

P_ = ¢(-3.0)¢(-

3 -2.5 × 0.7

_ - 0.72 ) = 3.88 × 10-4

2.5- 3.0 x 0.7.

_)_{ )= 2.49 × 10-4_/I

3.88 x 10 -4 < P/2 -< 6.37 × 10 -4

If the average of the lower and upper bounds for P[2 is used, i.e.,

P_2 _ 3.88 x 10 -4 + 6.37 × 10 -4 -- 0.00051

then, the Ditlevsen bounds are

SO

0.00621 + (0.00135 - 0.00051) < Pf < 0.00621 + 0.00135 - 0.00051
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P] = 0.00705

If the upper and lower bounds of Pl12 are used, then the Ditlevsen bounds are

0.00621 + 0.00135 - 0.00064 _< P] <_ 0.00621 + 0.00135 - 0.00039

0.00692 _< i='/< 0.00717

5.5.3 First-order Parallel Bounds

As in Section 5.5.1, the first-order parallel bounds are given as

0 < pf < rainP! (5.33)

These bounds are generally of little use, and closer bounds have not been derived [9]. The

computation of Pf is therefore based on Eq. (5.19) or

P_= PI n,__-,{g,(u) < o}l (5.34)

The analysis of parallel system, series system of parallel subsystems, or parallel system of

series subsystems is not yet as well developed as the analysis of series systems. Some research

approaches are given in Ref. [9].

5.6 System Reliability Calculation Using Approximations

In the previous section, the system reliability bounds were introduced. From Eqs. (5.27)

and (5.31), it is evident that the calculations of the element failure probabilities Pi and the joint

failure probabilities Pij are important to obtain the system reliability bounds. As mentioned
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in Chapter 4, the element failure probability P_ can be calculated by using first-, second-

and higher-order approximations for the failure surfaces. In this section, the system reliability

calculations using first-, second- and higher-order approximate failure regions are introduced.

5.6.1 Series System Reliability Calculation Using First-order Approximations

In the first-order system reliability calculation, the failure region is approximated by the

polyhedral region bounded by the tangent hyperplane at the MPP. The corresponding failure

probability can then be determined from Eq. (4.3.6) given in Section 4.3 for the probability

contents in polyhedral regions.

5.6.1.1 First-order System Reliability Analysis Using First-order Series Bounds

If the first-order series bounds are used to compute the system probability, there is no need

to calculate the joint failure probability. Thus, the first-order system failure probability using

the first-order series bounds can be calculated by the following steps:

1) Compute the element failure probability P/using

P[ =

2) Estimate system failure probability using the first-order series bounds given in Eq. (5.27);

k

i=l

Example 5.5

A cantilever beam shown in Fig. 5.12 is subjected to a tip load P. Two failure modes of

the displacement and stress constraints at the tip are considered as

4PL 3

gl = d_ Ebh3 , displacement
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L

P

b

h

Fig. 5.12 Cantilever Beam

12PL
g2 = S_ bh 2 , Stress

where d_ is the allowable displacement limit of 0.15in; S, is the allowable stress limit of

0.5E4psi; L, b and h are the length, width and height of the beam, which are 30in, 0.8359in

and 2.5093in, respectively. Young's modulus, E, is 107. The load P and the height of the

beam are considered random variables with normal distributions. P has a mean of 80.0lb, with

a standard deviation of ap -'- 20; and h has a mean of 2.5093, with a standard deviation of

ah = 0.25. The two failure modes are assumed to be dependent. Estimate the first-order system

failure probability using the first-order series bounds:

i) The failure probabilities of elements 1 and 2 are calculated using P/= (I)(-fl_):

P[ = (I)(-fll) = (I)(-2.0922) = 0.0182

PC= ¢(-Z2)= ¢(-1.9766)=0.0241

2) The first-order system failure probability is estimated by the first-order series bounds:

i.e.

k

m_xP! <_Ps <-Z P/
i=1

0.0241 < Pf0.0182 + 0.0241 = 0.0423

255



5.6.1.2 First-order System Reliability Analysis Using Second-order Series Bounds

T . .

/ / ....... _ I"O";"_*""'*

.',,

u l
_;:llu)-o • _j 1o').o

Fig. 5.13 Differences in First-order and Second-order Approximations
of Joint Failure Set

If the second-order series bounds are used, there is a need to compute the first-order

approximation of the joint failure probability. The first-order approximation to P12 is obtained

by approximating the joint failure region by the linear safety margins at the design points for

the two failure modes (Fig. 5.13). Fig. 5.3 shows the projection of the failure surfaces for the

two failure modes on the plane spanned by the origin and the two design points u_ and u_.

Then the safety margins M1 and M2 are calculated using Eq. (5.2), the correlation coefficient p

is computed using Eq. (5.3), and the joint failure probability PI_ can be obtained by using Eq.

(5.5) or the simple bounds of Eq. (5.11). The first-order system failure probability analysis

using the second-order series bounds is summarized as follows

1) Compute the element failure probability P/using

P/ =

2) Formulate the linear safety margins:
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n

k=l

n

k=2

3) Compute the correlation coefficient p:

n

k=l

4) Compute the joint failure probability P12 using Eq. (5.5) or Eq. (5.11).

5) Estimate the system failure probability using Eq. (5.31), that is

Example 5.6

k i-1 k k

{=2 j=l -- -- i=l j<i _3

Compute the first-order system failure probability for Example 5.5 using the second-order

series bounds:

1) The first-order element failure probabilities are obtained as

P[ = ¢(-flx) = ¢(-2.0922) = 0.0182

P] = ¢(-fl2) = ¢(-1.9766) = 0.0241

2) The linear safety margins are

M1 = 0.0182 + 0.4795ul - 0.8775u2

M2 = 1.9766 + 0.6294ul - 0.7771u2

3) The correlation coefficient is obtained as

p = alba + a262 = 0.4795 x 0.6294 + (-0.8775) _< (-0.7771) = 0.9837
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4) The joint failure probability is calculated using Eq. (5.5)

P12 = ¢2(-_1,-82; p)

dO

= 0.0168

¢=(-51,-55; z)dz

5) The system failure probability P/is calculated using the second-order series bounds:

SO

0.0182 + 0.0241 - 0.0168 <___Pf < 0.0182 + 0.0241 - 0.0168

P]= 0.0255

5.6.2 System Reliability Calculation Using Second-order Approximations

The second-order system reliability method is based on a more accurate approximation of the

failure surface than the first-order method. The element failure probabilities are computed by

the second-order reliability methods (SORMs, e.g. Bretung [10], Tvedt [ll]tvedt90,etc.) given

in Section 4.4 of Chapter 4. The second-order approximation to the joint failure probability

Pij is calculated by approximating the joint failure set by the linear safety margins at the joint

point Ui) on the joint failure surface closest to the origin. The difference between the first- and

second-order approximations to P_j is illustrated in Fig. 5.13 for a case of two basic variables.

In general, ui*j will not be in the hyperplane spanned by the origin and the design points u_

and u_; and ui*_- can be found by solving the following optimization problem:

Min 1uTu (5.35a)

g_(v) < 0, g_(v) < o (5.S5b)
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Here, the constraints are formulated as inequalities, and the optimal solution does not

necessarilycorrespondto an equality sign for both constraints. Any optimization algorithm can

be used to solvethis optimum problem. After solving the joint point U_, the safety margins

can be formulated as

(5.36a)
k_l

n

k=l

where _i and _:. are ith and jth failure element safety indices of the linear safety margins at

the joint point U_, and _k and bk are the kth direction cosines of _i and _j, respectively. The

correlation coefficient p is computed as

n

k=l

The joint failure probability given in Eq. (5.5) becomes

(5.37)

where

--. _0 pi3
(5.38)

¢2(-_i,-_j; z)- 2r_exp[ 1 - z 2 ] (5.39)

The main steps of computing the second-order system failure probability analysis using the

second-order series bounds are given as follows:

1) Compute the element failure probability PJ using SORM (Section 4.4)

2) Find the joint point of the two failure surfaces U_ by solving the optimization problem

given in Eq.(5.35).

3) Formulate the linear safety margins at the joint point U_
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n

k----1

r$

k=2

4) Compute the correlation coefficient p

p = p[M1,Ms]=
k=l

5) Compute the joint failure probability P12 using Eqs. (5.38) and (5.39)

6) Estimate the system failure probability using Eq. (5.31), that is

Example 5.7

k {-1 k k

P[ + E max{P/- E P_,0} < Py < E P{] - E maxP_
i=2 j=l -- _ i=1 i=2 j<i

Compute the system failure probability for Example 5.5 using second-order approximations:

1) The second-order element failure probabilities using Tvedt's method (Eq. 4.3.17) are

P[ = 0.0173, P_ = 0.0232

2) Find the joint point of the two failure surfaces U_ by solving the optimization problem

given in Eq.(5.35)

The joint point U{'2 is found at (0.6439,-2.0372).

3)Linearize the two failure surfaces at U_2 as

_a(U) = -0.2153(ux - 0.6439) + 0.375(u2 + 2.0372)

_2(U) = -0.2153(u1 - 0.6439) + 0.25(u2 + 2.0372)

Therefore, the minimum distances from the origin to _I(U) and _2(U) are

/31 = 2.0873, /32 = 1.9638
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The sensitivity factors of _I(U) and 02(U) are calculated as

The linear margins are

al = 0.49797,

bl = 0.65263,

MI= 2.0873 + 0.49797ul - 0.86719u2

/1/2= 1.9638 + 0.65263u, - 0.75768u2

4) ObtMn the correlation coefficient:

p = albl + a2b2 = 0.49797 x 0.65263 + (-0.86719) x (-0.75768) = 0.982044

5) Compute thejoint failure probability P12 using Eqs. (5.38) and (5.39)

SO

0.982044 1
P[2 = ¢(-2.0873)¢(-1.9638) + Jo 2_rv/f- z 2

2.08732 + 1.96382 - 2 x 2.0873 x 1.9638z
 xp[ ]

1 -- Z 2

--- 0.0184311 x 0.0247787 + 0.0164805

= 0.0169372

6) Calculate the system failure probability Pf using the second-order series bounds:

0.0173 + 0.0231 - 0.0169 _P/_ 0.0173 + 0.0231 - 0.0169

Pf= 0.0236
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5.6.3 System Reliability Calculation Using Higher-order Approximations

In the system reliability analysis using higher-order approximations, the element safety

indices, element failure probabilities, and the joint failure probabilities are calculated using

the developed two-point .adaptive nonlinear approximations [16]. The joint failure set is still

approximated as the linear safety margins at the joint point U/_ on the joint failure surface

closest to the origin (Fig. 5.13).

The main procedure of the system reliability analysis using higher-order approximations

includes:

1) Compute the safety indices of individual failure modes by approximating the failure

surface using an adaptive nonlinear approximation surface at the design point [13] [14];

2) Calculate the higher-order failure probability of individual failure modes using the

nonlinear approximation in a new rotated standard normal variable space, as given in Section

4.5 ([15]);

3) Find the joint point of the two failure surfaces U_ by solving the optimization problem

given in Eq.(5.35).

4) Formulate the linear safety margins at the joint point U_:

M_ = _1- _ a,uk
k=l

n

k---2

5) Compute the correlation coefficient p:

k=l

6) Compute the joint failure probability P12 using Eqs. (5.38) and (5.39).

7) Estimate the system failure probability using Eq. (5.31), that is
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k i-1 k k

P[ + E P ,O} < Pi <-E P/ - Ema×P 
i=2 j=l -- i=1 i=2 j<i z

The flow-chart in Fig. 5.14 shows the role of approximations in computing the safety index,

element, joint and system failure probabilities. The segments utilizing the approximations are

highlighted in Figure 5.14.

Example 5.8

Compute the system failure probability for Example 5.5 using higher-order approximations:

1) The higher-order element failure probabilities using HORM (Section 4.5) are

P[ = 0.0172, PJ = 0.0231

2) Find the joint point of the two failure surface Ui_ by solving the optimization problem

given in Eq.(5.35)

The joint point U_2 is found at (0.6439,-2.0372).

3)Linearize two failure surfaces at U_2 as

_I(U) = -0.2153(ul - 0.6439) + 0.375(u2 + 2.0372)

O2(U) = -0.2153(ul - 0.6439) + 0.25(u2 + 2.0372)

Therefore, the minimum distances from the origin to 01(U) and 02(U) are

_1 = 2.0873, _2 = 1.9638

The sensitivity factors of Ox(U) and _(U) are calculated as
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The linear margins are

MI= 2.0873 + 0.49797Ul - 0.86719u2

M2= 1.9638 + 0.65263ul - 0.75768u2

4) Obtain the correlation coefficient:

p = albl + a2b2 = 0.49797 x 0.65263 + (-0.86719) × (-0.75768) = 0.982044

5) Compute thejointfailure probability P12 using Eqs. (5.38) and (5.39):

_ /0.982044 1
- ¢(-2.0873)¢(-1.9638) + J0 2_ - z 2

exp[-2"08732 + 1"96382 - 2 × 2.0873 x 1.9638z]
1 -- Z 2

= 0.0184311 X 0.0247787 ÷ 0.0164805

= 0.0169372

6) Calculate the system failure probability P] using the second-order series bounds:

0.0172 + 0.0231 - 0.0169 _PIJ 0.0172 + 0.0231 - 0.0169

SO

P! = 0.0234

In this example, the element failure probabilities using HORM are very close to the Monte

Carlo simulation (P[ -- 0.0171, P2] = 0.0231), so more accurate system failure probability is

estimated. The joint failure probability P_2 among FORM, SORM and HORM are quite close

since the linearized surfaces at the joint point are used. More accurate calculations need to

be used if more accurate results are expected. The system failure probability obtained from
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FORM hassomedifferencesfrom SORM and HORM, evenif the second-orderboundsareused

to calculate Pf.

The higher-order approximations used in the system failure probability calculation reduce

the computational cost not only in computing the first- and second-order gradients for

the element failure probabilities, but also in finding the joint point U_2 for joint failure

probability calculations. Without the use of approximations, finding U_2 may need more than 3

iterations. As the failure elements and random variables increase, the system failure probability

calculations without using approximations will be more expensive. This example shows HORM

provides quite an accurate approach for the system failure probability calculations with much

less computational cost.

5.7 Summary

This chapter briefly presented first- and second-order system reliability methods. The

important class of series systems was analyzed by first- and second-order reliability methods

using bounds on the system reliability in terms of element and joint failure mode probabilities.

Because of the increased computational effort involved in calculating the joint failure

probabilities, the advantages of employing high quality approximations are clear.
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CHAPTER 6. RELIABILITY BASED STRUCTURAL OPTIMIZATION

This chapter discusses the importance of multidisciplinary optimization and the inclusion

of reliability-based constraints in design. Before addressing reliability issues, first a brief

introduction of mathematical programming techniques, algorithms, sensitivity analysis, design

variable linking and constraint approximations are discussed. The idea is to introduce the power

of design optimization tools for minimizing the structural failure risks. Whenever the design

modification for reliability improvement is involved, this in fact becomes a nested optimization.

First of all, the reliability index calculation is itself an iterative process with an optimization

technique for finding the shortest distance from the origin to the limit-state boundary in normal

space. This optimization loop provides just the _ value. At a higher level the designer would

like to modify the geometries, shapes, sizes, material properties and boundary conditions to

reduce the failure probability for the critical limit-states. Fig. 6.1 shows this design scheme by

incorporating various steps involved in multidisciplinary optimization. Two separate iterative

loops are shown, where the safety index search is an iterative process at each step of the

reliability optimization.

6.1 Multidisciplinary Optimization

Multidisciplinary optimization has a maximum impact at the preliminary stage of system

design. At this stage, the configuration has been defined and the materials have been selected.

The design task is the determination of structural sizes that will provide an optimal structure

while satisfying the numerous requirements that multiple disciplines impose on the structure.

Automated structural optimization tools shorten the design cycle time and provide locally

optimal designs. While, an integrated design tool brings in the requirements of diversified

disciplines into a design frame work and simultaneously considers all the goals before reaching

an acceptable and improved solution.
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A general optimization task may be defined in a mathematical form as:

Minimize:

F(X) Objective

Subject to:

gi(._) < 0 j = 1,...,ng Inequality Constraints

(6.1)

(6.2)

hk(._) = 0 k = 1,..., nh Equality Constraints (6.3)

Where

X_ t _< X_ < Xi _' i = 1,..., n Side Constraints (6.4)

= {X1,X2,...,X,_} Design Variables (6.5)

It is with in the design space defined by the above problem statement that the optimizer

searches for the best design.

There are many algorithms which can solve the above stated mathematical problem

(gradient projection method, feasible directions algorithm, Lagrange multipliers method,

interior and exterior penalty methods, sequential quadratic programming, etc.). Each algorithm

has certain merits in solving a specific problem; however, all these methods must face the

implicit nature of objective and constraint functions. For the most part, these are nonlinear

functions and need computationally expensive finite element analysis. Since the solution scheme

is essentially iterative, it involves a large number of structural reanalyses. Therefore the

computational cost often becomes prohibitive when large scale structures are optimized with

multidisciplinary requirements. To make the design problem tractable, various approximation

concepts are utilized at various stages of the design steps. These include: design variable

linking, temporary deletion of unimportant constraints, and the generation of high quality
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explicit approximationsfor the implicit functions. In the following, a brief description of these

efficiencyimprovement tools arediscussed.

6.1.1 Design Variable Linking

Having an independent design variable for each free parameter or finite element gives

additional degrees of freedom in solving the mathematical optimization problem. But,

sometimes this results in impractical or difficult to manufacture structures. In addition, solving

a problem with hundreds or thousands of design variables may not be a tractable one. Hence

there are several practical advantages in reducing the number of design variables. One way is

to link the local design variables with global variables. The global variables X are the ones

that are directly involved in the design process. The local variables are linked to the global

values through a matrix relationship of the form:

{'= P)( (6.6)

where {" is a vector of local variables, )( is a vector of global design variables and P is the

linking matrix. There are various forms of linking options possible based on the physics of the

problem. The idea is to significantly reduce the number of optimization variables using the P

matrix. Linking of design variables imposes additional constraints on the problem, and may

not lead to the lowest possible objective function.

6.1.2 Sensitivity Analysis

Mathematical programming approaches to the solution of Equations (6.1) through (6.4)

typically require the gradients of the objective function and the constraints with respect to the

design variables. That is:

OF

Ox---_ i= 1,2,...,n (6.7)
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c3z_ j = 1,2,...,ng, i = 1,2,...,n (6.8)

Finite difference calculations become burdensome when there are large numbers of design

variables and constraints. An efficient way to realize these gradients is to use analytical

gradients. By differentiating the equations of motion for the particular analysis discipline

with respect to the design variables, one could obtain the derivatives. In the case of reliability

analysis, the sensitivities of the constraints are used in computing the gradients of the limit

states using a chain rule of differentiation.

6.1.3 Reducing the Number of Constraints

A multidisciplinary design problem often involves a large number of inequality constr_nts

both behavioral and side constraints. The large number of constraints arises because it is

usually necessary to guard against a wide variety of failure modes in each of several distinct

loading conditions. During each stage of an iterative process, only critical and potentially
t

critical constraints need to be considered. Non-critical and redundant constraints that are not

currently influencing the iterative design process significantly are temporarily ignored. Two

commonly used techniques are regionalization and "throw-away" concepts. In regionalization,

for example under multiple static loading conditions, if the region contains various types of

finite elements (e.g. bars, shear panels, quadrilaterals, beams) it may be desirable to retain

one most critical stress constraint for each load condition and element type. The reduction of

constraints by use of the regionalization concept hinges upon the assumption that the design

changes made during a stage in the synthesis are not so drastic as to result in a shift of the

constraint location within a region. In the "throw away'" approach, unimportant (redundant

or very inactive) constraints are temporarily ignored in a particular iteration.

6.1.4 Approximation Concepts

The basic objective in this approach of approximate structural analysis is to obtain high

273



quality algebraically explicit expressions for the objective function and behavior constraints.

These explicit approximations are used in place of the detailed analysis during a stage in the

iterative process. The function approximations play a very significant role in reliability-based

optimization and they were extensively discussed in Chapter 3 and were successfully applied

in computing the safety index,/3 and the failure probability, PS. As the history shows, these

concepts were extensively used in mathematical optimization and most recently were brought

to the reliability analysis and design.

6.1.5 Move Limits

The approximations built at a specific point are valid with in certain bounds of n-dimensional

space. In order to maintain the validity of the approximations, limits are placed on how much

a local design variable can change during a design cycle. Move limits artificially restrict the

design space. Proper selection of move limits is important for convergence to the optimum.

In summary the basic problem, during each stage of the iterative process, is made tractable

by: (a) reducing the number of design variables through linking; (b) reducing the number of

constraints via regionalization and "throw away", and (c) by constructing algebraically explicit

approximations for active constraints as functions of design variables. For the purpose of

demonstration, one of the widely used mathematical programming techniques, the feasible

directions algorithm, is described for completeness. Using this procedure the approximate

problem is solved.

6.2 Mathematical Optimization Process

The design variable vector update can be written as

)_x = )_o + a._l (6.9)

where )/° is the initial vector of design variables, _a is the search vector, and a is the search
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parameter. Equation (6.9) representsa onedimensionalsearchsincethe update on )_1 depends

only on the single scalar parameter a. a* is the value of a that yields the optimal design in the

direction defined by S. Finding a* completes the first iteration in the "design" process. In order

to make any further improvement in the "design,"a new search direction S 2 must be found that

continues to reduce the objective function. Here we seek a "usable-feasible" direction, in which

a usable direction is one that moves us downhill and a feasible direction is one that keeps us

inside the bounds. This situation is shown in Fig 6.2. The mathematical definition of a usable

search direction is

VP(X). S< 0 (6.10)

Equation (6.10) is just the scalar product (dot product )of the gradient of the objective function

with the search direction. The dot product is the magnitude of VF()_) times the magnitude of

times the cosine of the angle between two vectors. Thus the cosine of the angle determines

the sign of the product since the magnitudes are positive numbers. For the cosine to be zero

or negative the angle between the vectors must be between 90 and 270 degrees. If the cosine is

zero, the search direction is at an angle of 90 or 270 from the gradient of the objective function .

A move in this direction follows a contour on the hill and ( for a small move ) does not increase

or decrease the function. If the cosine is -1.0, the direction is opposite to the direction of

VF()_) and is the direction of steepest descent. Thus we wish to find a search direction that

makes the left-hand side of equation Eq. (6.10) as negative as possible. However, this direction

must remain within a critical constraint. This is the feasibility requirement which is similar to

the usability requirement but now is stated with respect to the constraint

J < 0 (6.11)

Just as for the objective function, the angle between the search direction S and the gradient of

the constraint must be between 90 and 270 degrees. If the angle is exactly 90 or 270 degrees,

the search direction is tangent to the constraint boundary. To find the search direction, that
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Fig.6.2 Usable-Feasible Search Direction.

makes the greatest possible improvement in the objective function but still follows or moves

inside the bounds, we combine the usability and feasibility requirements. This combination

creates the following sub-optimizing task: Find the components of the search direction S that

minimizes

subject to:

VF(£). (_) (6.12)

Vgj()_). S _< 0 j E J (6.13)

S-S_<I (6.14)

Where J is the set of constraints whose values are zero within some numerical tolerance. In
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other words J includes any bounds that we were against, while those bounds somewhere else

do not matter because we can move towards them for at least some distance without going

outside. The purpose of Eq. (6.14) is simply to prevent an unbounded solution to the problem

defined by Eqs. (6.12) and (6.13). In the case of a simple two-variable problem, finding the

appropriate search direction is quite easy and may be done graphically. In a more general

case where there are numerous design variables as several active constraints, this becomes a

sub-problem that is solved as part of the optimization. This problem is linear in ff except for

thequadratic constraint of Eq. (6.14).

Assuming we can find a usable-feasible search direction, we can now search in this direction.

If we are moving tangentially along the boundary, as is the case here, we must make corrections

as we go to stay inside because the boundary is curved. That is, the constraint is assumed

to be mathematically linear. We continue searching and correcting in this direction until we

can make no further improvement. The sub-problem of finding a new usable-feasible search

direction is repeated and is followed by continued search until no search direction can be found

that improves the design without violating one or more of the constraints. We call this point

the "optimum". In the present example, we began inside the bounds, and have sequentially

improved the design until the optimum was reached. In practice, we start outside of one or

more boundaries in which case the initial design is infeasible.

The question now arises: How do we know that we have reached the optimum? The answer

can be found in what are known as the Kuhn-Tucker conditions. In the case of an unconstrained

problem, this is simply the condition where the gradient of objective function vanishes (i.e.,

equals zero). In the case of the constrained optimization problem considered here, the conditions

of optimality are more complex. Now the governing equation is the stationary condition of the

Lagrangian function:
M

L(._, A) = F()_) + _ A_gj()f) (6.15)
j=l

Aj > 0 (6.16)
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The Kuhn-Tucker conditions dictate that the Lagrangian function L(X,A) must have a

vanishing gradient at the optimum design denoted by X*. However, we must also remember the

original optimization problem and the inequality conditions. When all of these conditions are

considered, they lead to the statement of the Kuhn-Tucker necessary conditions for optimality:

Condition 1:

X" is feasible. Therefore, for all j, Gj(X _*) < 0 (6.17)

Condition 2:

Ajgj(.,_*) =0 (the product of Aj and gj(.,_*) equals zero) (6.18)

Condition 3:

M

VF(._') + _--_'_A_Vgj (._*) = 0 (6.19)
j=l

Aj > 0 j = 1,2,...,M (6.20)

The physical interpretation of these conditions is that the sum of the gradient of the objective

and scalars As multiplied by the associated gradients of all active constraints must vectoriaily

add to zero. Fig. 6.3 shows this situation for a simple two-variable function space in which two

constraints are active at the optimum.

These axe only the necessary conditions and the definition here is actually a bit more

restrictive than required in some cases. However, it does provide the essential idea. In

practice, it is difficult to numerically find a design that precisely satisfies the Kuhn-Tucker

conditions. Also, numerous designs may satisfy these conditions since there may be more

than one constrained minimum. The importance of the Kuhn-Tucker conditions is that an

understanding of the necessary conditions for optimality gives us some knowledge of what is

needed to achieve an optimum. Most of the more powerful methods update the design by the

relationship as shown
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Fig.6.3 Kuhn-Tucker Conditions at a Constrained Optimum.

(6.21)

where :

q = iteration number

= vector search direction

a* = scalar move parameter

The product a*S is the design modification at the current step. An initial design must be

provided, but it does not need to satisfy all of the constraints. One of the most powerful uses

of optimization is to find a feasible solution to a complicated problem.

In order to determine a search direction S which improves the design, gradients of the

objective and critical constraints must be supplied. Ideally, these are computed analytically

or semi-analytically. This process dramatically increases the size of the problem that can be

efficiently solved. Finally, a "one-dimensional" search is performed by trying several values of
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a and interpolating for the one that gives a minimum objective function while satisfying the

constraints. During this process the objective function and the constraints must be repeatedly

evaluated. Here the use of approximation methods plays a major role because, the evaluation

of these constraints would otherwise require a full finite element analysis.

The Modified Feasible Direction Algorithm

Now we turn to the actual task of solving the approximate problem. The method

described here is referred to as the Modified Method of Feasible Directions (Ref.[1]). The

assumption is that we are provided with an objective function F()_) and constraints

gj(X) < 0, j = 1,2,...,ng as well as lower and upper bounds on the design variables.

Also, the gradients of the objective and constraints are available. We are solving the following

general problem.

Find the set of design variables xi,

subject to

i - 1, 2..., n contained in a vector X that minimizes

F(._) (6.22)

gj(X) < 0 j = 1,2,... ,ng (6.23)

Xi L __ Xi __ Xi U i = 1,2,..., n (6.24)

Given an initial X-vector X °, update the design according to Eq. (6.21),which is also repeated

here

Xq = £q-1 +  .gq (6.25)

The optimization process now proceeds in the following steps:

o

2.

3.

4.

5.

Start, q = 0, X q = X °.

q=q+l.

Evaluate r()_) and gj(X) where J = 1,2,...,ng.

Identify the set of critical and near critical constraints J.

Calculate VF(__) and Vgj(._) where j E J.
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.

7.

8.

9.

Determine a usable-feasible search direction ffq.

Perform a one-dimensional search to find a*.

SetZq =  q-1 +  .gq.

Check convergence to the optimum. If satisfied, exit. Otherwise, go to Step 2.

The critical parts of the optimization task consist the following:

1. Find a usable-feasible search direction, Sq.

2. Find the scalar parameter a* that minimizes F()_) subjected to the constraints.

3. Test for convergence to )(* the optimum, and terminate if convergence is achieved.

We will discuss each of these in turn.

Finding the Search Direction Sq

The first step in finding the search direction is to determine which constraints, if any, are

active or violated. Here an active constraint is defined as one with a value between a small

negative number and a small positive number. Then, the gradients of the objective function

and all the active and violated constraints are calculated. Thereafter, a usable feasible search

direction is found (if one exists). In this case there are three possibilities:

1. There are no active, or violated constraints.

2. There are active constraints but no violated constraints.

3. There are one or more violated constraints.

Each of these possibilities is handled differently.

No Active or Violated Constraints (Unconstrained Minimization)

Frequently at the beginning of the optimization process there are no active or violated

constraints. In this case the feasibility requirement is automaticallymet since we can move in

any direction for at least a short distance without violating any constraints. Thus, we only

need to find a usable direction which is the one that points down hill. It does not have to be

the steepest descent direction, but to start the process this is the preferred choice. Therefore

the initial search direction is simply:
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Svq = -VF(.X q-') (6.26)

The steepest descent direction is only used if this is the beginning of the optimization (q = 1)

or if the last iteration had no active or violated constraints.

Now assume the last search direction is in the steepest descent direction and there are still

no active constraints. (If there were no violated constraints before, there will not be any now.)

The next step can be to search again in the steepest descent direction, which is often done

(This direction is perpendicular to the previous direction). We can use a "conjugate" search

direction, or more precisely an A-conjugate direction where A is a matrix of second partial

derivatives of the objective function. The A matrix is not actually computed but there are

methods for approximating A that offer a guaranteed convergence rate for problems where the

objective function is a quadratic function.

The Fletcher - Reeves conjugate direction method which is very simple and reliable is a

good choice. This method defines a search direction as:

#q = -VF(Zq) -1 (6.27)

I VF(._q-1)12

where a = ]2 (6.28)I VF(._q -2 )

The advantage of using the conjugate search direction is seen from Figures 6.4 and 6.5 which

show a simple two-variable design space. In Figure 6.4 the search directions axe the steepest

descent directions, whereas in Figure 6.5 the conjugate directions are used. In Figure 6.4 the

search direction is always perpendicular to the previous direction. On the other hand in Figure

6.5 each search direction uses the steepest descent direction plus some fraction of the previous

direction.
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Fig.6.4 Geometric Interpretation of the Steepest Descent Method.

Active but no violated constraints

The more common search direction problem, in which the initial design is feasible and there

is a constraint, is to find a search direction that improves the design but moves parallel to or

away from a constraint. To solve this problem first find a search direction S that reduces the

objective function without violating any currently active constraints. The following equations

state the problem in mathematical terms:

Find the search direction S q that minimizes

VF(Xq-1) • ffq (6.29)

subject to

Vgj(-_q-1) • Sq j E J Feasibility condition (6.30)

:fq.Sq < 1 Bounds on S (6.31)

This is the same problem as shown in Eqs.(6.12) through (6.14) for finding a usable-feasible
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Fig.6.5 Geometric Interpretation of the Fletcher-ReevesMethod.

searchdirection in the physical exampleof searchingfor the lowestpoint on the hill. Note that

the scalar product is the magnitude of the two vectors multiplied by the cosineof the angle

betweenthem. Thus the objective of this sub-optimizationproblem is

IVF(Xq-1)I • I ff I .co,(O) (6.32)

Since we are minimizing this function we want the cosine of the angle between the two vectors to

be as large a negative number as possible but within the restriction of Bq. (6.30). Alternatively

for any angle 0 between 90 and 270 degrees £q. (6.32) can be made more negative if the

magnitude of ff is increased. Also if S satisfies the requirements of £q. (6.30), then any increase

in magnitude of S also satisfies this equation. Therefore it is necessary to bound S which is

accomplished using £q. (6.31).

Assuming the resulting objective function from this subproblem is negative, the usability

requirement of Eq(6.10) is satisfied. If the objective function defined by Eq. (6.29) cannot be

forced to be negative, then it follows that no direction exist that reduces the objective function
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while staying insidethe constraints. If this is the casethe Kuhn-Tuckerconditions aresatisfied,

and the optimization processmay be terminated.

One or more violated constraints

Now consider the case where one or more constraints are violated. Such a case is shown in

Figure 6.6 where constraint gl(X) is violated and g2(X) is active. Now we must find a search

direction back toward the feasible region even if it is necessary to increase the objective function

to do so. To achieve this, we augment over the direction-finding problem of Eqs.(6.29) through

(6.31) with a new variable W. This process has no direct physical significance to the problem

except as a measure of the constraint violation.

X2

0 11

Fig.6.6 Violation of Constraint(s)

The new direction finding problem is now:

Find the search direction S and critical variable W that minimizes

VF(Yq-I).g- CW (6.33)
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subject to

Vgj()(q-1) • ffq +SjW <_ 0 j E J (6.34)

ffq-ffq + W < 1 (6.35)

For discussion, assume the parameter 8j in Eq. (6.34) is equal to 1.0, and the parameter

W is a very large positive number. Then the second term dominates the minimizing of the

function defined by Eq. (6.33). Therefore, any increase in the variable W forces the objective

function to be more and more negative (i.e., it reduces the objective of the direction finding

problem). However for W to increase the first term in Eq. (6.34) must become more and more

negative. Since Svq is bounded by Eq. (6.35), the cosine of the angle between Vgj()_ q-l) and

ffq must be moved closer and closer to -1.0 . For this to happen, ffq must point in a direction

opposite to gj(.,.Y_-_ ). That is ffq must point straight back toward the feasible region. The first

term in Eq.(6.33) is included simply as a means to reduce the true objective function if possible

while seeking a feasible design.

Now consider the value of 8j in Eq.(6.34). This is referred to as a push-off factor since its

value determines how hard to push away from this violated constraint. If ai = o, then even

increasing W does not require a move anywhere except tangent to the constraint. Also this

move will probably not move the design back to the feasible region. Therefore some positive

value is needed. In optimizer, the more the constraint is violated, the greater the push-off away

from the violated constraint. Finally, the value of ¢ is initially chosen as a small number, such

as 5.0.

One dimensional search

Having determined a usable-feasible search direction, the problem now becomes one of

determining how far the optimization can move in that direction. A variety of possibilities

exist depending on the starting point X q-_. However, in each case, the optimization program

makes use of polynomial approximations to the objective and constrained functions in the one-
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dimensional direction definedby S. The basic concept is to try some initial value for a* in

Eq.(6.25) and evaluate the corresponding objective and constraint functions. At the beginning

of the optimization process, very little information is available except that the function values

and their derivatives with respect to a* are available. However, we consider the objective

function (the same algebra applies to constraints) and create a first order approximation to

F(a*) in terms of a*.

F(Zq)---F(_7q-1+ _'_q)

Thus, a linear approximation to F(fq) is

(6.36)

l _ J't0a*,j" a* (6.37)

or

[dF(f"-I) 1 ,.
F()_q) = F()_ q-a) + l _ J "

[ov(xq-_)l
But [ ax, j is just the j-th entry of VF()_q-_), or [VF(Xq-1)]i.

Also from Eq.(6.25), [ax_] = Si . Therefore,
[0a*J

(6.3s)

dF('_q-1) - VF()_q-a) • ffq (6.39)

Since both terms in Eq.(6.37) are available, we have the slope of function at a* = 0 for any

function (objective or constraint ) for which the gradient is available.

Now consider how this information might be used. Since this is the first step in the

optimization process, we may try to reduce the objective function by some fraction, for example

10%, which can be stated as

F(Zq) = F(£ _-_)+
dF(.Xq -_ )

do¢*
._.= v(f_-_)_ 0.1. i F(_,-_) I (6.40)

287



from which a proposed a* is obtained as follows:

0.1. IF(2q-1) l
a,s** = (6.41)

This results in an estimate of a* which reduces the objective function by 10% . However

since the gradients of some constraints are probably available, the otker possible moves can

be calculated as well. Remember that Eq.(6.38) applies to a constraint by simply substituting

the constraint gradient for the objective gradient. Now assume that some constraint gradients

for the constraints exist that are not critical, a_d it is desired to estimate how far to move to

make one of them critical. That is, instead of reducing the value of the function by 10%, as was

done for the objective, it is desired to estimate a move in a* that places it near the constraint

boundary. Thus, a linear approximation to find gj(P_q) = 0, is

[gj(2q-')
gj(Zq) = gj(R + [ •.'=0 (6.42)

and an estimate for a* is

.
a_s, = (6.43)

dc¢*

Therefore, even at the beginning of the one dimensional search a considerable amount of

information is available to direct the process. Using the estimates for a* given by Eq.(6.41)

and Eq.(6.43) for each non-critical constraint, the smallest positive proposed a* is taken as the

first estimate of how far to move.

If constraints are currently violated, Eq.(6.43) can still be used. Applying this

approximation to all violated constraints, the largest proposed value of a* is selected as an

estimate of how far to move to overcome all constraint violations. If the projected move to a

constraint that is not currently active is smaller than this, then only move to that constraint as

a first estimate since we do not want to add new constraints to the set of violated constraints.
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Using similar approximations, we can also estimate an upper bound on a* that forces all design

variables to their lower or upper bounds. Then this provides a maximum allowable value for

The one-dimensional search process now proceeds to find the bounds on the a* that contain

the solution. Once the bounds on a* are known, the constrained minimum is found by

interpolation. Since Sq has been chosen as a direction of improving the design, the search

can be limited to positive values of 0% At this point, the best search direction to improve the

design is determined and is conducted in that direction.

Convergence to the Optimum

Since numerical optimization is an iterative process, one of the most critical and difficult

task is determining when to stop. It is important to remember that the process described in

this section only relates to the solution of the approximate optimization problem. The number

of cycles through the entire design process is controlled similar criteria.

The first criterion requires that the relative change in the objective between iterations is

less than a specified tolerance. Thus the criterion is satisfied if:

[ [ < 0.001 (6.44)
i F(Z q_l) i -

The second criterion is that the absolute change in the objective between the iterations is less

than a specified tolerance. This criterion is satisfied if

[ F(.,_q)- F(.,gq-1) [ < 0.0001 (6.45)

6.3 Summary

This section has attempted to provide a brief overview of the computational details of the

optimization process. The method described here is known as the modified method of feasible

directions. The one-dimensional search problem is generally referred to as the polynomial

interpolation with bounds. The algorithm presented here is available as the software package
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DOT (Design Optimization Tools) [3]. Severalstructural problemswere optimized using the

algorithms presentedin this report. The examplesinclude frame, plate and truss structures

with stress,displacement,and frequencyconstraints. Multiple load.conditions and constraints

are considered[4-6]. The efficiency of using adaptive approximations in reliability analysis

and optimization are well documentedin the publishedpapers [7-9]. Hencethey are simply

referenced.

Also, this work developeda GraphicalUserInterfacewhichsimplifiesand helpsthe selection

of random variables, distributions and solution strategies. Again, results are available in

published papers[10].The procedurewasdemonstratedon a turbine bladeproblem.
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Appendix A: Multivariate Hermite Approximation

In order to demonstrate that the proposed Hermite function possesses the same value and

the same derivatives at each of the p data points as the exact function, rewriting Eq. (2.5.3a),

hi(S) at the t th known point St can be given as

hi(S,) = (S,- s_)T(si - S,) (St- s2)T(s,- $2) (S,- sj)T(si- Sj)
(s,- s,)r(s,- s,) (s, - S=)T(S,- S_)"'(S,-- Sy(S, - Sj)""

(S,- S_)_(S_- S_)
(Si- Sp)T(Si - Sp)' J # i (A.1)

Using this equation, it is easy to prove that hi(St) = 1 when t = i because the numerator

is the same as the denominator for this case. When t is not equal to i, t must be the same as

one of j values (j=l,2,...p, j # i) because j is also not equal to i. So a zero term appears in

the product terms of Eq. (A.1) so that hi(St) equals zero. Therefore, hi(S) at the known data

points St (t=l,2,...p)satisfy

[ 1 t = i
hi(St)

o t#i

i = 1,2,...,p, t = 1,2,...,p (A.2)

Based on this equation and Eq. (2.5.3c), it is esy to prove that the derivatives of hi(S) at the

known data points St (t=l,2,...,p) satisfy

P (sk,_--skZ)

Ohm(St) _ (s,-sj)r(s,-s_) t = i
= j=l,j_i

Osk

0 t¢i

i = 1,2,...,p, t = 1,2,...,p (A.3)

Substituting Eqs. (A.2) and (A.3) into (2.5.4), the function value at the ffh known point can

be written as

P

](st) = X_{g(s,) + [vg(s,) - 2g(s,)v _,(s,)]_(s, - s,)}h_(s,)
i=1

(A.4a)
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The summation can be expandedastwo parts

}(&) {g(&)+ [vg(s,)- 2g(&)v h,(S,)]r. 0}h,_(&)
P

+ _ {g(s,)+ [vg(S_)- 2g(s,)v h,(s,)]r(s,- s,)} .o
i=l,ift

Substituting Eqs.

be written as

"{V](St) = _ 2hi(St) V h_(S,){g(Si) + [Vg(S_) - 2g(S_) _7 h_(S_)]T(s,- S,)}
/=1

- 2a(s,)v _,(s,)]}+h_(S,)[Xyg( Si)

Again, by the expanding the summation into two parts

(A.4b)

(A.2) and (A.3) into (2.5.5), the derivatives at the t th known point can

(A.5a)

v](&) = 2h,(&)_ h,(&){g(&) + [_g(&) - 2a(&)_ h,(&)]r. O}

+h_(S,)ivg(&)- 2g(S,)_ h,(&)]

+ £ {2"O'O'{g(S_)+[vg(S,)-2g(S,). vh,(S,)]T(st - 5',)}
i=l,i#t"

[_7g(S_)- 2g(S,) _7 h,(S_)]}+0.

= 2h,(&)v h,(s,)g(s,)+ h_,(S,)v g(s,)- 2h,_(s,)v h,(S,)a(S,)

= 2V h,(St)g(St) + vg(S,) - 2 V h,(St)g(St)

= _g(St) (A.5b)

Eqs. (A.4) and (A.5) demonstrate that the proposed multivariate Hermite approximation

possesses the same function values and derivatives at each of the known data points as the

original information.
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Appendix B: Parameters of the Distribution of a Random Variable

B.1 Expected Value

Expected value is sometimes called the mathematical expectation, or expectation or the

mean value of the random variable.

For a discrete polulation, the mean is just the summation of all discrete values where each

value is weighted for the probability of its occurence.

Let x be a random variable of the discrete type with jump points Xk and probabilities pk.

The expected value of the random variable can be expressed as

n

E(x) = _ xkpk (B.1)
k=l

if the series is absolutely convergent.

For a continuous type, let f_:(x) be the density function of random variable x. The expected

value of the random variable can be expressed as

r+oo

E(x) =

if the intergral f+o_ xf_(x)dx is absolutely convergent.

(B.2)

B.2 Variance

The variance of a random variable X is the expected value of its squared deviation from

its expected value p, denoted by Vat(X) or a 2, or the measure of dispersion of the random

variable around its expected value.

Let X be a random variable of the discrete type with jump points xk and probabilities pk.
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The variance of the random variable can be expressed as

v_(x) = E[(X- Z(X)) _]= E[(X- _)_]

B.3 Expected Value and Variance of Functions

B.3.1 Expected value of functions

Consider y - g(x) as the single-valued function of x and x as a random of the discrete type

with jump points xk and probabilities Pk. The expected value of the random variable g(x) can

be expressed as

oo

E(y) = E[g(x)] = __,p_g(xk)
k=l

(B.3)

if the series is absolutely convergent.

Also, let x be a random variable of the continuous type with density function f_(x). The

expected value of the random variable g(x) can be expressed as

coE(y) = E[g(x)] = oo g(x)f_(z)dx

if the integral f+o_ g(x)f_(x)dx is absolutely convergent.

(B.4)

B.3.2 Variance of linear functions

Given n random variable xl, x2, ..., xn and a set of n constants cl, c2, ..., c_, the linear

function is expressed as

n

Z = _ cix; (B.5)
i=1

The expected value of the function Z is
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The variance of Z is

n

E(Z) = Z c_E(x,)
i=1

(B.6)

n _ n

V,.'( Z) _ 2= ciax, + Z Z cicjpija_,a_j, i :p j (B.7)
i=1 i=1 j=l

where pij is the correlation coefficient of xi and xj. If n random variables are independent, then

n

v,,.(z) = _ c,2_, (B.8)
i=1
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Appendix C: Calculation of Coordinates 7/

A secant formula is used for calculating the coordinates r/a and qb-

r/_ - r/i+x
_i+2 = _7_-- gi (C.1)

gi - gi+l

where g_ and gi+l are the performance function values at Ya or Yb with _i and Tli+l, respectively.

By taking one data point, say Yb, calculation of _/b is explained, r/_ can be obtained using a

similar procedure. For initial trial points, it is convenient to first examine Th = _3, and the

performance function value gl at the point Yb(k_, k_3, ..., Th) is calculated. The sign of gl is

used for determining whether T/ is greater or smaller than 8. If gl > 0, 7/2 = (1 + 0.5k2)_,

otherwise, _2 = (1 - 0.5k2)_. With these two initial points, rh and T/2, the equation given in

Eq. (C.1) is used to obtain _/3 and a new point Yb(k/3, k/_, ..., r/3). The performance function

value g3 at Yb is calculated to check whether Yb is on the limit state surface or not. If it is on

the surface, stop the iteration; otherwise, continue using Eq. (C.1) until gi+2(Yb)=0.
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Appendix D: Asymptotic Expansion of a Multinormal Integral

In Ref. [14] of Chapter 4 (this report), asymptotic expansions are given for integrals of the

form

I(A) = L exp(A)f(U))fo(U)dU, (A ---, oo) (D.1)

D is a fixed domain in the n-dimensional space, f(U) and f0(U) are at least two times

continuously differentiable functions. Further, it is assumed that the boundary of D is given

by the point U with h(U) = 0, where h(U) is also at least twice continuously differentiable.

It is shown that, if f(U) has no global maximum with respect to D at an interior point of D,

the asymptotic behavior of ](A) depends on the points on the boundary where f(U) attains

its global maximum on the boundary. Due to the Lagrange multiplier theorem, a necessary

condition for these points is that Vf(U) = g. Vh(U) (g is a constant). The contribution of

one of these points to the asymptotic expansion of ](A) is given in Eqs. 8, 3, 64, page 340,

Ref. [14] of Chapter 4 (this report). Defining D = [U;g(U; 1) < 0], X = _2, f(U) = -[U[2/2,

h(U) = g(U; 1), the formula can be applied to obtain an asymptotic expansion for I(_). Due to

the assumption made at the beginning, there is only one point U on the surface g(U; 1) = 0 with

minimal distance to the origin, i.e. only one point U0 in which -[U[2/2 achieves its maximum.

Eqs. 8,3,64 yields then

with

where

[ ,

n

J = __, __, UgUJocof(-6ij - Kgo)
i=1 j=l

(fl ---, oo) (D.2)

(D.3)
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U_o= ith component of Uo

6ij = 6 Kronecker Symbol

02g(u; 1)
gij- OuiOuj IU=Uo

K = IAg(Uo; l)I-I

denotes the cofactor of the element

Since ]Uo[ = 1, the formula simplifies

(-6_ - Kg_j) in the matrix

I03) )i3-("+a)lJF'/2 (D.4)

Due to the rotational symmetry it can be assumed for further considerations, that Uo =

(0, ...,0, 1) (i.e. the unit vector in the direction of the u,-axis). Then, since Uo is parallel to

the gradient of 9(U; 1) at U0 due to the Lagrange multiplier theorem, the tangential space of

the hyper surface at Uo is spanned by the unit vectors in the direction of the first n - 1 axes.

Then J is given (using the definition of the cofactor):

IJI- Icof[-6,, - Kg,,]I = ]det(B)[

with B = (6_m + K91m)l,m=l .....,-1

Defining

b = (-Kgxm)l,m=x,...,n-x

and denoting the unity matrix by I:

(D.5)

det(B) = det(I - D)
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Det(B) is given by the product of the eigenvalues of B, which are the roots of det(B- _I) =

e$

det((1 - _)I - D). But these roots are given by 1 - _i (i = 1, ..., n - 1), in which the _ are

the eigenv_lues of the matrix D. This gives:

n-1

IJ] = [ _--_(i + aj)#l (D.7)
j:l

These eigenvalues are the main curvatures of the surface at Uo. The curvature is defined

positive. Eq. (D.7) shows, in which cases the approximation is not applicable. Since Uo is a

point on the surface with minimal distance to the origin, the main curvatures at U0 must not

be larger than unity, elsewhere, consider a point U on the surface near Uo in the direction of

a principal axis of curvature at U0 with curvature _ larger than unity. Due to the definition

of the curvature, the curve on the surface connecting U0 and U is approximated by a part of

1 and center (0, 0, 1 - 1/_). Usinga circle in the same direction through U0 with radius _- ...,

elementary trigonometric relations, for small distances [U - U0[ the squared distance of U to

the origin is approximately

[UI 2 _ I + (1- ai)lU-Uol 2
2 < 1 (D.8)

This contradicts the assumption, that U0 is a point on the surface with minimal distance to

the origin with respect to the surface and therefore _ _< 1. Due to this

n-1

IJ[ = II (I + _j#) (D.9)
j=l

In the case that one curvature is exactly equal to unity, the approximation can not be used.

Then it becomes necessary to study higher derivatives of g(U) and the global behavior of the

function.
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Appendix E: Hermite and Laguerre Integral Parameters

E.1 Hermite Intergal Parameters

The Hermite integral formula can be used to solve the following integral

N

ff_ f(x)dx - _ Aie_ f(_i) (E.1)
c_ i---1

where N is the number of Hermite integral terms. The Hermite integral formula with ten terms

is used, and its parameters are given in Table El.

For the integration of Eq. (4.3.30), the ten-term Hermite formulas are given as

10 _!.¢2 _..._ _m

H (0) =_)tie _.e _" ¢0.1"'
i=1

I0 1 2 a m

- 5_i - co,_ _iH 0) - _ Aie _ • a(_- e
i----1

I0 a2f2m. ] 2

i=1

10 a 3_'3m a 2= • • e- _' - ¢-_',__?H (3) _ Ale _
i----1

For the integration of Eq. (4.3.36), the ten-term Hermite formulas are given as

lO
2 1 f2.1. a tim

/_1o) = _ Aie_, . e-r.,-_o,2.,
i----1

10
--1 ¢24 a._a.._crn

[-1(1)= _ aie_ . aC" e 7.,-_o,_-,
i=1

10

e- _--i - 7_'a -i

i=1

10 . a3fi3, m ,_:2, . ;m
/_(3) = _ Aie ¢_ _. • e-:"-7-5"'

i=l

where Ai and _i are Hermite integral parameters which are given in Table El.

(E.2a)

(E.2b)

(E.2c)

(E.2d)

(E.3a)

(E.ab)

(E.3c)

(E.3d)
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Table El. Hermite Integral Parameters

1 0.3429013272

2 -0.3429013272

3 1.0366108298

4 -1.0366108298

5 1.7566836493

6 -1.7566836493

7 2.5327316742

8 -2.5327316742

9 3.4361591188

10 -3.4361591188

0.6870818540

0.6870818540

0.7032963231

0.7032963231

0.7414419319

0.7414419319

0.8206661264

0.8206661264

1.0254516914

1.0254516914

Table E2. Laguerre Integral Parameters

1 0.1523222277

2 0.8072200227

3 2.0051351556

4 3.7834739733

5 6.2049567779

6 9.3729852517

7 13.4662369111

8 18.8335977890

9 26.3740718909

Ale _=

0.3914311243

0.9218050285

1.4801279099

2.0867708076

2.7729213897

3.5916260681

4.6487660021

6.2122754198

9.3632182377
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E. 2 Laguerre Integral Parameters

The Laguerre integral formula can be used to solve the following integral

N

Z_f(x)dx = _ Xie('f(_) (E.4)
i=1

where N is the number of Laguerre integral terms. The Laguerre integral formula with nine

terms is used, and its parameters are given in Table E2. For the integration of Eq. (4.3.48),

the nine-term Laguerre formulas are given as

9 1¢-'2 a _-rn

L (01= __, _ie _' . e-_,-_-_-;_,
i=1

9

L (x) = _ _ie(' • a_7" e-_'' --4-'Y-,
i=1

9

i=1

9 _ I_-"2 a ym

5(3) E _ie{i _3_-3m ......• a _i • e 2"_ co, l',t

i=1

(E.5a)

9 _L__ a_.a_fm

Z(°) = _ _ie _-'• e _" oo,_-,
i=1

9

i=1

9

L (2) = _ _ie _' .a_2amCi

1_ a yrn
• e-g _, - _'7,__i

1¢_ a frn
. e--2_i--_--_,2 "_i

i=I

9

L(3) _ _ie _-,.,__3n._c; e - '-_-=-"-_-_"= - • =" _.=" (E.5b)
i=1

In the case that all a_ are negative, and V1 < 0 and V2 > 0, the integration of Eq. (4.3.49)

is computed a_

9 -**"4a- a ,Zm

L (°) = __, _ie _' • e _''-_-_,'''
i=1
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9

z(_ _- _ _ L_. "a(?. °-_, ÷_
i=.l

O

i=1

9

9

_(o) = _ Le<_. e-_o, +_ "
i=1

9

9

i_2) = _ iie_ -2am
i=l

9

• (£ _i " L,. '0,2 I
i=1

where ,_i and (/axe Laguerre integra/parameters which are given in Table E2.
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